Investigation of the Electronic Structure of BiFeO3 Epitaxial Films by Polarized X-Ray Absorption Spectroscopy

Article Preview

Abstract:

To investigate the epitaxial strain effect on local electronic structure of FeO6 octahedron of BiFeO3 epitaxial film, polarization-dependent Fe L23-edge x-ray absorption spectroscopy studies were performed on both tetragonal (T)-like BFO/LAO and rhombohedral (R)-like BFO/STO epitaxial films. Charge transfer multiplet theory based fittings were also performed to reveal the local electronic structure difference. Due to dramatic structural difference caused by epitaxial strain between these two samples, significant electronic structure differences were observed between these two specimens. For BFO/LAO, anisotropic electronic structure appears in vertically-elongated FeO6 octahedron and an additional shift of Fe ion off the central position is suggested. For BFO/STO, electronic structure is almost isotropic.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

183-187

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Ederer, N.A. Spaldin, Phys. Rev. B 71 (2005) 224103.

Google Scholar

[2] D. Lebeugle, D. Colson, A. Forget, et al. Phys. Rev. B 76 (2007) 024116.

Google Scholar

[3] Y.H. Chu, L.W. Martin, M.B. Holcomb, et al. Materials Today 10 (2007) 16.

Google Scholar

[4] Z. Chen, L. You, C. Huang, et al. Appl. Phys. Lett. 96 (2010) 252903.

Google Scholar

[5] H. Béa, B. Dupé, S. Fusil, et al. Phys. Rev. Lett. 102 (2009) 217603.

Google Scholar

[6] D. Mazumdar, V. Shelke, M. Iliev, et al. Nano Letters 10 (2010) 2555.

Google Scholar

[7] A.R. Damodaran, S. Lee, J. Karthik, et al. Phys. Rev. B 85 (2012) 024113.

Google Scholar

[8] O. Dieguez, O.E. Gonzales-Vasquez, J.C. Wojde, et al. Phys. Rev. B 83 (2011) 094105.

Google Scholar

[9] B. Dupe, I.C. Infante, G. Geneste, et al. Phys. Rev. B 81 (2010) 144128.

Google Scholar

[10] R.J. Zeches, M.D. Rossell, J.X. Zhang, et al. Science 326 (2009) 5955.

Google Scholar

[11] K.T. Ko, M.H. Jung, Q. He, et al. Nature communications 2 (2011) 567.

Google Scholar

[12] J.X. Zhang, Q. He, M. Trassin, et al. Phys. Rev. Lett. 107 (2011) 147602.

Google Scholar

[13] Z.L. Luo, H. Huang, H. Zhou, et al. Appl. Phys. Lett. 104 (2014) 182901.

Google Scholar

[14] Z. Luo, Z. Chen, Y. Yang, et al. Phys. Rev. B 88 (2013) 064103.

Google Scholar

[15] Z. Chen, Z. Luo, C. Huang, et al. Adv. Funct. Mater. 21 (2011) 113.

Google Scholar

[16] C. Xue, Y. Wang, Z. Guo, et al. Review of Scientific Instruments 81 (2010) 103502.

Google Scholar

[17] F. De Groot, A. Kotani: Core level spectroscopy of solids (CRC press publications, New York 2008).

Google Scholar

[18] G. van der Laan, B.T. Thole, Phys. Rev. B 43 (1991) 13401.

Google Scholar

[19] J.C. Yang, Q. He, S.J. Suresha, et al. Phys. Rev. Lett. 109 (2012) 247606.

Google Scholar

[20] A. Scholl, J. Stohr, J. Luning, et al. Science 287 (2000) 1014.

Google Scholar

[21] J. Luning, F. Nolting, A. Scholl, et al. Phys. Rev. B 67 (2003) 214433.

Google Scholar