Synchronous Characterization of Self-Bias Magnetoelectric Composite Materials

Article Preview

Abstract:

To investigate the mechanism of self-bias magnetoelectric effect in magnetoelectric composite materials, a synchronous characterization technique was developed to characterize the magnetoelectric effect, the magnetostrictive effect, and the magnetic hysteresis loop by one-time test. The results of a magnetoelectric composite consisting of hybrid ferromagnetic phases showed that the obvious magnetoelectric hysteresis behavior was found with significant self-bias magnetoelectric effect. In addition, after demagnetizing, the residual magnetic polarization became zero and the magnetoelectric effect disappeared at the same time. Since the ferromagnetic phases were separated from each other, the mechanism of self-bias magnetoelectric effect mainly resulted from static magnetic coupling instead of build-in magnetic field. It was concluded that the synchronous characterizing technique was quite helpful when analyzing the mechanism of magnetoelectric behavior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

199-203

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zhai, Z. Xing, S. Dong, J. Li and D. Viehland: Appl. Phys. Lett. Vol. 88 (2006), p.062510.

Google Scholar

[2] J. Yang, Y. M. Wen, P. Li and X. L. Bai: Sci. China Tech. Sci. Vol. 54 (2011), p.1419.

Google Scholar

[3] S. Dong, J. F. Li, D. Viehland, J. Cheng and L. E. Cross: Appl. Phys. Lett. Vol. 85 (2004), p.3534.

Google Scholar

[4] Z. Shi, L. Chen, Y. Tong, H. Xue, S. Yang, C. Wang and X. Liu: Appl. Phys. Lett. Vol. 102 (2013), p.112904.

Google Scholar

[5] Z. Shi, C. Wang, X. Liu and C. W. Nan: Chinese Sci. Bull. Vol. 53 (2008), p.2135.

Google Scholar

[6] C. W. Nan, M. I. Bichurin, S. X. Dong, D. Viehland and G. Srinivasan: J. Appl. Phys. Vol. 103(2008), p.031101.

Google Scholar

[7] Z. Shi, Y. Tong, S. Deng, H. Xue, S. Yang, Y. Lu C. Wang and X. Liu: Appl. Phys. Lett. Vol. 103 (2013), p.032903.

Google Scholar

[8] Y. Zhou, S. C. Yang, D. J. Apo, D. Maurya and S. Priya: Appl. Phys. Lett. Vol. 101 (2012), p.232905.

Google Scholar

[9] J. Zhang, P. Li, Y. Wen, W. He, A. Yang and C. Lu: Appl. Phys. Lett. Vol. 103 (2013), p.202902.

Google Scholar

[10] Y. Yan, Y. Zhou and S. Priya: Appl. Phys. Lett. Vol. 102 (2013), p.052907.

Google Scholar

[11] J. Zhang, P. Li, Y. Wen, W. He, J. Yang, M. Li, A. Yang, C. Lu and W. Li: J. Appl. Phys. Vol. 115. (2014), p. 17E517.

Google Scholar

[12] L. Chen, P. Li, Y. Wen, Y. Zhu: J. Alloy. Compd. Vol. 595 (2014), p.87.

Google Scholar

[13] M. Li, Z. Wang, Y. Wang, J. Li and D. Viehland: Appl. Phys. Lett. Vol. 102 (2013), p.082404.

Google Scholar

[14] L. Chen, P. Li, Y. Wen and Y. Zhu: Rev. Sci. Instrum. Vol. 84 (2013), p.066101.

Google Scholar

[15] U. Laletin, G. Sreenivasulu, V. M. Petrov, T. Garg, A. R. Kulkarni, N. Venkataramani and G. Srinivasan: Phys. Rev. B Vol. 85 (2012), p.104404.

Google Scholar

[16] J. Lou, G. N. Pellegrini, M. Liu, N. D. Mathur and N. X. Sun: Appl. Phys. Lett. Vol. 100 (2012), p.102907.

Google Scholar

[17] Z. Zheng, Z. Shi, J. Zhao, Y. Ma, C. Wang and X. Liu: J. Univers. Electron. Sci. Tech. China Vol. 40 (2011), p.88.

Google Scholar