Microwave Absorption Properties of Solid-State Polymerization Ethylenedioxythiophene

Article Preview

Abstract:

Poly (3,4-ethylenedioxythiophene) (PEDOT) has been synthesized through a facile solid-state polymerization (SSP) approach. The polymerization was simply initiated by sintering the monomer, 2,5-dibro-3,4-ethylenedioxythiophene (DBEDOT), at the temperature of 80 °C. The SSP-PEDOT with the heating time for 24 hours has the maximum value of dielectric loss tangent (tanδε) in the frequency range of 2-18 GHz, which revealed that this sample has the best electromagnetic energy absorption ability. When the thickness of the sample reached 2 mm, the bandwidth with the reflection loss (RL) deeper than −10 dB is nearly 5.9 GHz (From 10.0 GHz to 15.9 GHz), and the maximum value of RL is about −50.1 dB at 11.2 GHz. These results demonstrate that SSP initiated at low temperature shows multi-practical application in the areas of military camouflage, and electronic devices protection.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

483-488

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. L. Fan, W. Yang, Z. M. Chao, Microwave absorbing composite lattice grids, Compos. Sci. Tech. 67(2007) 3472-3479.

DOI: 10.1016/j.compscitech.2007.03.002

Google Scholar

[2] L. Yang, H. L. Fan, J. Liu, et al. Hybrid lattice-core sandwich composites designed for microwave absorption, Mater. Des. 50(2013) 863-871.

DOI: 10.1016/j.matdes.2013.03.032

Google Scholar

[3] Q. Zheng, H. L. Fan, J. Liu, et al. Hierarchical lattice composites for electromagnetic and mechanical energy absorptions, Compos. B. 53(2013) 152-158.

DOI: 10.1016/j.compositesb.2013.04.057

Google Scholar

[4] N. Li, Y. Huang, F. Du, et al. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites, Nano. Lett. 6(2006) 1141-1145.

DOI: 10.1021/nl0602589

Google Scholar

[5] Y. Yang, M. C. Gupta, K. L. Dudley, et al. Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding, Nano. Lett. 5(2005) 2131-2134.

DOI: 10.1021/nl051375r

Google Scholar

[6] P. B. Liu, Y. Huang, X. Sun, Excellent electromagnetic absorption properties of Poly (3, 4-ethylenedioxythiophene)-reduced Graphene Oxide-Co3O4 composites prepared by a hydrothermal method, ACS Appl. Mater. Interfaces. 5(2013) 12355-12360.

DOI: 10.1021/am404561c

Google Scholar

[7] P. B. Liu, Y. Huang, X. Zhang, Superparamagnetic NiFe2O4 particles on poly(3, 4-ethylenedioxythiophene)-graphene: Synthesis, characterization and their excellent microwave absorption properties, Compos. Sci. Tech. 95(2014) 107-113.

DOI: 10.1016/j.compscitech.2014.02.018

Google Scholar

[8] B. R. Kim, H. K. Lee, S. H. Park, et al. Electromagnetic interference shielding characteristics and shielding effectiveness of Polyaniline-Coated films, Thin Solid Films. 519(2011) 3492-3496.

DOI: 10.1016/j.tsf.2011.01.093

Google Scholar

[9] P. B. Liu, Y. Huang, X. Zhang, Superparamagnetic NiFe2O4 particles on poly(3, 4-ethylenedioxythiophene)-graphene: Synthesis, characterization and their excellent microwave absorption properties, Compos. Sci. Tech. 95(2014) 107-113.

DOI: 10.1016/j.compscitech.2014.02.018

Google Scholar

[10] H. R. Tantawy, D. E. Aston, J. R. Smith, et al. Comparison of electromagnetic shielding with Polyaniline nanopowders produced in solvent-limited conditions, ACS Appl. Mater. Interfaces. 5(2013) 4648-4658.

DOI: 10.1021/am401695p

Google Scholar

[11] P. Saini, M. Arora, G. Gupta, B. K. Gupta, V. N. Singh, V. Choudhary, High Permittivity Polyaniline-Barium Titanate Nanocomposites with Excellent Electromagnetic Interference Shielding Response, Nanoscale. 5(2013) 4330-4336.

DOI: 10.1039/c3nr00634d

Google Scholar

[12] W. C. Zhou, X. J. Hu, S. Y. Zhou, et al. Facile route to controlled iron oxides/poly(3, 4-ethylenedioxythiophene) nanocomposites and microwave absorbing properties, Compos. Sci. Tech. 87(2013) 14-21.

DOI: 10.1016/j.compscitech.2013.07.020

Google Scholar

[13] F. Jonas, L. Schrader, Conductive modifications of polymers with Polypyrroles and Polythiophenes, Synth. Met. 831(1991) 41-43.

DOI: 10.1016/0379-6779(91)91506-6

Google Scholar

[14] L. B. Groenendaal, F. Jonas, D. Freitag, et al. Poly(3, 4-ethylenedioxythiophene) and its derivatives: Past, Present, and Future, Adv. Mater. 12(2000) 481-494.

DOI: 10.1002/(sici)1521-4095(200004)12:7<481::aid-adma481>3.0.co;2-c

Google Scholar

[15] L. B. Groenendaal, G. Zotti, P. H. Aubert, et al. Electrochemistry of Poly(3, 4-alkylenedioxythiophene) derivatives, Adv. Mater. 115(2003) 855-879.

DOI: 10.1002/adma.200300376

Google Scholar

[16] M. Magat, Polymerization in the solid state, Polymer. 3(1962) 449-469.

Google Scholar

[17] M. J. Cohen, A. F. Garito, A. J. Heeger, et al. Solid state polymerization of Sulfur Nitride (S2N2) to (SN)x, J . Am. Chem. Soc. 98 (1976) 3844-3848.

DOI: 10.1021/ja00429a018

Google Scholar

[18] H. Meng, D. F. Perepichka, M. Bendikov, et al. Solid-state synthesis of a conducting polythiophenevia an unprecedented heterocyclic coupling reaction, J . Am. Chem. Soc. 125 (2003) 15151-15162.

DOI: 10.1021/ja037115y

Google Scholar

[19] H. Meng, D. F. Perepichka, F. Wudl, Facile solid-state synthesis of highly conducting Poly(ethylenedioxythiophene), Angew. Chem. Int. Ed. 42(2003) 658-661.

DOI: 10.1002/anie.200390181

Google Scholar

[20] Y. Naito, K. Suetake, Application of ferrite to electromagnetic wave absorber and its characteristics, IEEE Trans. Microwave Theory. 19(1971) 65-72.

DOI: 10.1109/tmtt.1971.1127446

Google Scholar

[21] H. Zhang, A. J. Xie, C. P. Wang, et al. Novel rGO/α-Fe2O3 composite hydrogel: Synthesis, characterization and high performance of electromagnetic wave absorption, J. Mater. Chem. A . 1(2013) 8547-8552.

DOI: 10.1039/c3ta11278k

Google Scholar

[22] K. Singh, A. Ohlan, V. H. Pham, et al. Nanostructured Graphene/Fe3O4 incorporated Polyaniline as a high performance shield against electromagnetic pollution, Nanoscale. 5(2013) 2411-2420.

DOI: 10.1039/c3nr33962a

Google Scholar

[23] M. Zhou, X. Zhang, J. M. Wei, Morphology-controlled synthesis and novel microwave absorption properties of hollow Urchinlike α-MnO2 nanostructures, J. Phys. Chem.C. 115(2011) 1398-1402.

DOI: 10.1021/jp106652x

Google Scholar