Surface Modified UHMWPE Particles by Direct Fluorination Blended with Polyurethane for Enhancing its Wear-Resistant Performance

Article Preview

Abstract:

In this study, Ultra-high molecular weight polyethylene (UHMWPE) particles were surface treated by F2/N2 and F2/O2/N2 two direct fluorination routes. A great number of polar groups are grafted on the surface of UHMWPE particles after direct fluorination confirmed by FT-IR and X-ray photoelectron spectroscopy (XPS) characterization. Two kinds of surface modified UHMWPE particles were blended with thermoplastic polyurethane (TPU) by dissolving in solvent. The scanning electron microscope (SEM) demonstrates that the interfacial interaction degree between the two polymer phases is correlated with the chemical composition of a fluorinated surface layer. The TPU composite with the UHMWPE particle treated by F2/O2/N2 route obtains excellent tribological performance enhancement with significant decrease in wear loss, ranging from 192.9 mm3 to 97.8 mm3, about 49.3% reduction compared with the virgin TPU.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

489-495

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Kanda, K. Yuse, D. Guyomar, Y. Nishi, Controllable Electrostriction of Polyurethane Film, Trans Tech Publ, 2014, 2429-32.

DOI: 10.4028/www.scientific.net/msf.783-786.2429

Google Scholar

[2] A.C.V. Da Nóbrega, A.E. Martinelli, D.M.D.A. Melo, M.A. de Freitas Melo, J.C. de Oliveira Freitas, F.S. de Oliveira, Effect of Mud Acid on Portland-Aqueous Polyurethane Composites to Oil Well Cementing, Trans Tech Publ, 2013, 307-12.

DOI: 10.4028/www.scientific.net/msf.730-732.307

Google Scholar

[3] Z. Zhang, H. Song, X. Men, Z. Luo, Effect of carbon fibers surface treatment on tribological performance of polyurethane (PU) composite coating, Wear, 264(2008) 599-605.

DOI: 10.1016/j.wear.2007.05.003

Google Scholar

[4] H. Yuan, P. Hu, Study of a compatibilized ultra-high-molecular-weight polyethylene and polyurethane blend, J Appl Polym Sci, 81(2001) 3290-3295.

DOI: 10.1002/app.1785

Google Scholar

[5] S. Cao, H. Liu, S. Ge, G. Wu, Mechanical and tribological behaviors of UHMWPE composites filled with basalt fibers, J Reinf Plast Comp, 30(2011) 347-55.

DOI: 10.1177/0731684410394698

Google Scholar

[6] S. Wannasri, S.V. Panin, L.R. Ivanova, L.A. Kornienko, S. Piriyayon, Increasing wear resistance of UHMWPE by mechanical activation and chemical modification combined with addition of nanofibers, Procedia Engineering, 1(2009) 67-70.

DOI: 10.1016/j.proeng.2009.06.018

Google Scholar

[7] F. Saulnier, M. Dubois, K. Charlet, L. Frezet, A. Beakou, Direct fluorination applied to wood flour used as a reinforcement for polymers, Carbohyd Polym, 94(2013) 642-646.

DOI: 10.1016/j.carbpol.2013.01.060

Google Scholar

[8] A.P. Kharitonov, G.V. Simbirtseva, V.M. Bouznik, M.G. Chepezubov, M. Dubois, K. Guerin, A. Hamwi, H. Kharbache, F. Masin, Modification of Ultra-High-Molecular Weight Polyethylene by Various Fluorinating Routes, J Polym Sci Pol Chem, 49(2011).

DOI: 10.1002/pola.24793

Google Scholar

[9] S. Wang, S. Ge, The mechanical property and tribological behavior of UHMWPE: Effect of molding pressure, Wear, 263(2007) 949-956.

DOI: 10.1016/j.wear.2006.12.070

Google Scholar

[10] A.P. Kharitonov, L.N. Kharitonova, Surface modification of polymers by direct fluorination: a convenient approach to improve commercial properties of polymeric articles, Pure Appl Chem, 81(2009) 451-71.

DOI: 10.1351/pac-con-08-06-02

Google Scholar

[11] A. Tressaud, E. Durand, C. Labrugère, A.P. Kharitonov, L.N. Kharitonova, Modification of surface properties of carbon-based and polymeric materials through fluorination routes: From fundamental research to industrial applications, J Fluorine Chem, 128(2007).

DOI: 10.1016/j.jfluchem.2006.12.015

Google Scholar

[12] A.M. Ferraria, J.D. Lopes Da Silva, A.M. Botelho Do Rego, Optimization of HDPE direct fluorination conditions by XPS studies, J Fluorine Chem, 125(2004) 1087-1094.

DOI: 10.1016/j.jfluchem.2004.01.014

Google Scholar

[13] A. Majjane, A. Chahine, M. Et-tabirou, B. Echchahed, T. Do, P.M. Breen, X-ray photoelectron spectroscopy (XPS) and FTIR studies of vanadium barium phosphate glasses, Mater Chem Phys, 143(2014) 779-87.

DOI: 10.1016/j.matchemphys.2013.10.013

Google Scholar

[14] T. Solomun, A. Schimanski, H. Sturm, E. Illenberger, Efficient formation of difluoramino functionalities by direct fluorination of polyamides, Macromolecules, 38(2005) 4231-4236.

DOI: 10.1021/ma050067c

Google Scholar

[15] T. Cheng, H. Lin, M. Chuang, Surface fluorination of polyethylene terephthalate films with RF plasma, Mater Lett, 58(2004) 650-653.

DOI: 10.1016/s0167-577x(03)00586-x

Google Scholar

[16] B. Li, J. Gao, X. Wang, C. Fan, H. Wang, X. Liu, Surface modification of polypropylene battery separator by direct fluorination with different gas components, Appl Surf Sci, 290(2013) 137-141.

DOI: 10.1016/j.apsusc.2013.11.015

Google Scholar

[17] K. Matsubara, M. Danno, M. Inoue, Y. Honda, T. Abe, Characterization of nitrogen-doped TiO2 powder prepared by newly developed plasma-treatment system, Chem Eng J, 181(2012) 754-760.

DOI: 10.1016/j.cej.2011.11.075

Google Scholar