Chirality Synthesis of N-Shaped ZnO Nanorods by Glacial Acetic Acid Assisted Annealing Process and Ethanol Sensing Properties

Article Preview

Abstract:

N-shaped ZnO nanorods were first chirality synthesized by glacial acetic acid assisted annealing process. X-ray powder diffraction results show that these nanorods are of ZnO wurtzite-structure. These nanorods grow from a thin platelet base and are parallel to each other to form n-shaped ZnO nanorods. The width of thin platelet bases range from 50 to 130 nm. The diameters of the nanorods rang from 25 to 60nm, and their lengths are 0.2—0.6um. Gas sensors fabricated from these n-shaped ZnO nanorods show a very high sensitivity to ethanol gas and the sensitivity is up to about 35 against 1000 ppm ethanol gas at the operating temperature of 300°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

458-463

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers, Science 292 (2001), 1897.

DOI: 10.1126/science.1060367

Google Scholar

[2] B. Liu, H. C. Zeng, Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm, J. Am. Chem. Soc. 125 (2003) , 4430.

DOI: 10.1021/ja0299452

Google Scholar

[3] Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of semiconducting oxides, Science 291 (2001) , (1947).

Google Scholar

[4] L. Vayssieres, K. Keis, A. Hagfeldt, S. E. Lindquist , Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes, Chem. Mater. 13 (2001), 4395.

DOI: 10.1021/cm011160s

Google Scholar

[5] J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, S. T. Lee, Thermal Reduction Route to the Fabrication of Coaxial Zn/ZnO Nanocables and ZnO Nanotubes, Chem. Mater. 15(2003) , 305.

DOI: 10.1021/cm020649y

Google Scholar

[6] D. J. Milliron, S. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang, A. P. Alivisatos , Colloidal Nanocrystal Heterostructures with Linear and Branched Topology, Nature 430 (2004) , 190.

DOI: 10.1038/nature02695

Google Scholar

[7] D. Ledwith, S. C. Pillai, G.W. Watson, J. M. Kelly, Microwave induced preparation of a-axis oriented double-ended needle-shaped ZnO microparticles, Chem. Commun. (2004) 2294.

DOI: 10.1039/b407768g

Google Scholar

[8] P. Hu, Y. Liu, X. Wang, L. Fu, D . Zhu, Tower-like structure of ZnO nanocolumns, Chem. Commun. (2003) 1304.

DOI: 10.1039/b302821f

Google Scholar

[9] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott , Biomimetic Arrays of Oriented Helical ZnO Nanorods and Columns, J. Am. Chem. Soc. 124(2002), 12954.

DOI: 10.1021/ja0279545

Google Scholar

[10] Y. Zhang, H. Jia, X. Luo, X. Chen, D. Yu, R. Wang, Synthesis, Microstructure, and Growth Mechanism of Dendrite ZnO Nanowires, J. Phys. Chem. B. 107(2003), 8289.

DOI: 10.1021/jp034834q

Google Scholar

[11] J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, ZnO Nanobridges and Nanonails, Nano Lett. 3(2003), 235.

DOI: 10.1021/nl025884u

Google Scholar

[12] X. Y. Kong, Z. L. Wang, Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts, Nano Lett. 3(2003), 1625.

DOI: 10.1021/nl034463p

Google Scholar

[13] H. Yan, R. He, J. Johnson, M. Law, R. J. Saykally, P. Yang, Dendritic Nanowire Ultraviolet Laser Array, J. Am. Chem. Soc. 125(2003), 4728.

DOI: 10.1021/ja034327m

Google Scholar

[14] P. Gao, Z. L. Wang, Self-Assembled Nanowire−Nanoribbon Junction Arrays of ZnO, J. Phys. Chem. B. 106 (2002), 12653.

DOI: 10.1021/jp0265485

Google Scholar

[15] R. H. Wang, J. H. Xin, X. M. Tao, W. A. Daoud, ZnO Nanorods grown on cotton fabrics at low temperature, Chem. Phys. Lett. 398(2004), 250.

DOI: 10.1016/j.cplett.2004.09.077

Google Scholar

[16] Y. Dai, Y. Zhang, Z. L. Wang, The octa-twin tetraleg ZnO nanostruclures, Solid State Commun. 126(2003), 629.

DOI: 10.1016/s0038-1098(03)00277-1

Google Scholar

[17] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, C. L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett. 84(2004), 3654.

DOI: 10.1063/1.1738932

Google Scholar

[18] P. Feng, Q. Wan, T. H. Wang, Contact-controlled sensing properties of flowerlike ZnO nanostructures, Appl. Phys. Lett. 87 (2005), 213111.

DOI: 10.1063/1.2135391

Google Scholar

[19] Y. J. Chen, X. Y. Xue, Y. G. Wang, T. H. Wang, Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods, Appl. Phys. Lett. 87(2005), 233503.

DOI: 10.1063/1.2140091

Google Scholar

[20] H. Windischmann, P. Mark, Model for the operation of a thin-Film SnOx conductance–modulation carbon monoxide, sensorJ. Electrochem. Soc. 126(1979), 627.

DOI: 10.1149/1.2129098

Google Scholar

[21] J. Xu, Q. Pan, Y. Shun, Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor, Sens. Actuators B 66 (2000), 277.

DOI: 10.1016/s0925-4005(00)00381-6

Google Scholar