[1]
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers, Science 292 (2001), 1897.
DOI: 10.1126/science.1060367
Google Scholar
[2]
B. Liu, H. C. Zeng, Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm, J. Am. Chem. Soc. 125 (2003) , 4430.
DOI: 10.1021/ja0299452
Google Scholar
[3]
Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of semiconducting oxides, Science 291 (2001) , (1947).
Google Scholar
[4]
L. Vayssieres, K. Keis, A. Hagfeldt, S. E. Lindquist , Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes, Chem. Mater. 13 (2001), 4395.
DOI: 10.1021/cm011160s
Google Scholar
[5]
J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, S. T. Lee, Thermal Reduction Route to the Fabrication of Coaxial Zn/ZnO Nanocables and ZnO Nanotubes, Chem. Mater. 15(2003) , 305.
DOI: 10.1021/cm020649y
Google Scholar
[6]
D. J. Milliron, S. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang, A. P. Alivisatos , Colloidal Nanocrystal Heterostructures with Linear and Branched Topology, Nature 430 (2004) , 190.
DOI: 10.1038/nature02695
Google Scholar
[7]
D. Ledwith, S. C. Pillai, G.W. Watson, J. M. Kelly, Microwave induced preparation of a-axis oriented double-ended needle-shaped ZnO microparticles, Chem. Commun. (2004) 2294.
DOI: 10.1039/b407768g
Google Scholar
[8]
P. Hu, Y. Liu, X. Wang, L. Fu, D . Zhu, Tower-like structure of ZnO nanocolumns, Chem. Commun. (2003) 1304.
DOI: 10.1039/b302821f
Google Scholar
[9]
Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott , Biomimetic Arrays of Oriented Helical ZnO Nanorods and Columns, J. Am. Chem. Soc. 124(2002), 12954.
DOI: 10.1021/ja0279545
Google Scholar
[10]
Y. Zhang, H. Jia, X. Luo, X. Chen, D. Yu, R. Wang, Synthesis, Microstructure, and Growth Mechanism of Dendrite ZnO Nanowires, J. Phys. Chem. B. 107(2003), 8289.
DOI: 10.1021/jp034834q
Google Scholar
[11]
J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, ZnO Nanobridges and Nanonails, Nano Lett. 3(2003), 235.
DOI: 10.1021/nl025884u
Google Scholar
[12]
X. Y. Kong, Z. L. Wang, Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts, Nano Lett. 3(2003), 1625.
DOI: 10.1021/nl034463p
Google Scholar
[13]
H. Yan, R. He, J. Johnson, M. Law, R. J. Saykally, P. Yang, Dendritic Nanowire Ultraviolet Laser Array, J. Am. Chem. Soc. 125(2003), 4728.
DOI: 10.1021/ja034327m
Google Scholar
[14]
P. Gao, Z. L. Wang, Self-Assembled Nanowire−Nanoribbon Junction Arrays of ZnO, J. Phys. Chem. B. 106 (2002), 12653.
DOI: 10.1021/jp0265485
Google Scholar
[15]
R. H. Wang, J. H. Xin, X. M. Tao, W. A. Daoud, ZnO Nanorods grown on cotton fabrics at low temperature, Chem. Phys. Lett. 398(2004), 250.
DOI: 10.1016/j.cplett.2004.09.077
Google Scholar
[16]
Y. Dai, Y. Zhang, Z. L. Wang, The octa-twin tetraleg ZnO nanostruclures, Solid State Commun. 126(2003), 629.
DOI: 10.1016/s0038-1098(03)00277-1
Google Scholar
[17]
Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, C. L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett. 84(2004), 3654.
DOI: 10.1063/1.1738932
Google Scholar
[18]
P. Feng, Q. Wan, T. H. Wang, Contact-controlled sensing properties of flowerlike ZnO nanostructures, Appl. Phys. Lett. 87 (2005), 213111.
DOI: 10.1063/1.2135391
Google Scholar
[19]
Y. J. Chen, X. Y. Xue, Y. G. Wang, T. H. Wang, Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods, Appl. Phys. Lett. 87(2005), 233503.
DOI: 10.1063/1.2140091
Google Scholar
[20]
H. Windischmann, P. Mark, Model for the operation of a thin-Film SnOx conductance–modulation carbon monoxide, sensorJ. Electrochem. Soc. 126(1979), 627.
DOI: 10.1149/1.2129098
Google Scholar
[21]
J. Xu, Q. Pan, Y. Shun, Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor, Sens. Actuators B 66 (2000), 277.
DOI: 10.1016/s0925-4005(00)00381-6
Google Scholar