Titanium Nitride Modified by Hydrothermal Treatment in Calcium Acetate Solution

Article Preview

Abstract:

Dental implant made of pure titanium (Ti) has become one important option to restore the function of lost tooth. However, because of insufficient hardness, it is always scratched during oral hygieneprocedures. To improve its surface hardness,titanium nitride (TiN) coating was prepared. Soft tissue - implant interface is important for blocking bacteria invasion, therefore surface modification is necessary to improve biocompatibility of TiN for fibroblasts.In the present study, TiN coating was modified by hydrothermal treatment incalcium acetate (CaAc) solution and effect of hydrothermal treatment temperature was studied. After treatment,calcium (Ca) wassuccessfully combined into TiN surface and the surface morphology, roughness and hardness were not changed below 140 °C. It is expected that, surface modification with Ca by hydrothermal treatment could made TiN a promising dental implant coating.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

446-450

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.M. Pilliar, P/M processing of surgical implants: Sintered porous surfaces for tissue-to-implant fixation, Int. J. Powder Metall. 34 (1998) 33-45.

Google Scholar

[2] R. Mengel, C. Meer L.F. Jacoby, The treatment of uncoated and titanium nitride-coated abutments with different instruments, Int. J. Oral Maxillofac. Implants. 19 (2004) 232-238.

Google Scholar

[3] T. Sawase, K. Yoshida, Y. Taira, K. Kamada, M. Atsuta,K. Baba, Abrasion resistance of titanium nitride coatings formed on titanium by ion-beam-assisted deposition, J. Oral Rehabil. 32 (2005) 151-157.

DOI: 10.1111/j.1365-2842.2004.01382.x

Google Scholar

[4] B. Klinge, M. Hultin,T. Berglundh, Peri-implantitis, Dent. Clin. North Am. 49 (2005) 661-676, vii-viii.

DOI: 10.1016/j.cden.2005.03.007

Google Scholar

[5] J. Lindhe, T. Berglundh, I. Ericsson, B. Liljenberg,C. Marinello, Experimental breakdown of peri-implant and periodontal tissues. A study in the beagle dog, Clin. Oral Implants Res. 3 (1992) 9-16.

DOI: 10.1034/j.1600-0501.1992.030102.x

Google Scholar

[6] E.S.M. Ong, H.N. Newman, M. Wilson J.S. Bulman, The Occurrence of Periodontitis-Related Microorganisms in Relation to Titanium Implants, J. Periodontol. 63 (1992) 200-205.

DOI: 10.1902/jop.1992.63.3.200

Google Scholar

[7] A. Ruhling, T. Kocher, J. Kreusch H.C. Plagmann, Treatment of subgingival implant surfaces with Teflon-coated sonic and ultrasonic scaler tips and various implant curettes. An in vitro study, Clin. Oral Implants Res. 5 (1994) 19-29.

DOI: 10.1034/j.1600-0501.1994.050103.x

Google Scholar

[8] Y. Tamura, A. Yokoyama, F. Watari,T. Kawasaki, Surface properties and biocompatibility of nitrided titanium for abrasion resistant implant materials, Dent. Mater. J. 21 (2002) 355-372.

DOI: 10.4012/dmj.21.355

Google Scholar

[9] I. Abrahamsson, T. Berglundh, J. Wennstrom,J. Lindhe, The peri-implant hard and soft tissues at different implant systems - A comparative study in the dog, Clin. Oral Implants Res. 7 (1996) 212-219.

DOI: 10.1034/j.1600-0501.1996.070303.x

Google Scholar

[10] T. Berglundh, I. Abrahamsson, M. Welander, N.P. Lang,J. Lindhe, Morphogenesis of the peri-implant mucosa: an experimental study in dogs, Clin. Oral Implants Res. 18 (2007) 1-8.

DOI: 10.1111/j.1600-0501.2006.01380.x

Google Scholar

[11] X. Shi, K. Tsuru, L. Xu, G. Kawachi,K. Ishikawa, Effects of solution pH on the structure and biocompatibility of Mg-containing TiO2 layer fabricated on titanium by hydrothermal treatment, Appl. Surf. Sci. 270 (2013) 445-451.

DOI: 10.1016/j.apsusc.2013.01.046

Google Scholar

[12] X. Shi, M. Nakagawa, G. Kawachi, L. Xu,K. Ishikawa, Surface modification of titanium by hydrothermal treatment in Mg-containing solution and early osteoblast responses, J. Mater. Sci. Mater. Med. 23 (2012) 1281-1290.

DOI: 10.1007/s10856-012-4596-4

Google Scholar

[13] X.L. Shi, K. Tsuru, G. Kawachi,K. Ishikawa, Effects of hydrothermal treatment on properties of titanium nitride coating for dental implants, Key Eng. Mater. 529-530 (2013) 247-250.

DOI: 10.4028/www.scientific.net/kem.529-530.247

Google Scholar

[14] H. Aita, N. Hori, M. Takeuchi, T. Suzuki, M. Yamada, M. Anpo,T. Ogawa, The effect of ultraviolet functionalization of titanium on integration with bone, Biomaterials. 30 (2009) 1015-1025.

DOI: 10.1016/j.biomaterials.2008.11.004

Google Scholar

[15] D. Scharnweber, F. Schlottig, S. Oswald, K. Becker,H. Worch, How is wettability of titanium surfaces influenced by their preparation and storage conditions?, J Mater Sci-Mater M. 21 (2010) 525-532.

DOI: 10.1007/s10856-009-3908-9

Google Scholar

[16] S.M. Yang, H.Z. Kou, H.J. Wang, K. Cheng J.C. Wang, The photoelectrochemical properties of N3 sensitized CaTiO3 modified TiO2 nanocrystalline electrodes, Electrochim. Acta. 55 (2009) 305-310.

DOI: 10.1016/j.electacta.2009.08.055

Google Scholar

[17] Y. Tsutsumi, D. Nishimura, H. Doi, N. Nomura,T. Hanawa, Difference in surface reactions between titanium and zirconium in Hanks' solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization, Mat. Sci. Eng. C-Bio. S. 29 (2009).

DOI: 10.1016/j.msec.2009.01.016

Google Scholar

[18] H. Okawachi, Y. Ayukawa, I. Atsuta, A. Furuhashi, M. Sakaguchi, K. Yamane,K. Koyano, Effect of titanium surface calcium and magnesium on adhesive activity of epithelial-like cells and fibroblasts, Biointerphases. 7 (2012) 27.

DOI: 10.1007/s13758-012-0027-9

Google Scholar