Structure Changes of Coating on NiTi Alloy Prepared by Micro-Arc Oxidation in Na2SiO3 Electrolyte

Article Preview

Abstract:

Nickel titanium is a near-equiatomic intermetallic that possesses distinctive and desirable thermomechanical properties. Micro-arc oxidation (MAO) treatment of NiTi can effectively prevent the release of Ni ions from NiTi. In this paper, NiTi is treated with MAO method in Na2SiO3 electrolyte. MAO process of NiTi in Na2SiO3 electrolyte contains two stages: “growth period”, “jumped period”. During the process of MAO, Ni in NiTi is oxidized to Ni ion, and the Ni ions are dissociated in electrolyte. Ti was left in NiTi, which generate much Ti content appearing on the surface of the sample, and contribute to prerequisites for the reaction. After the applied voltage reaches a certain value, Na2SiO3 electrolyte participate in the reaction and form insulating amorphous silicon oxide layer. With the increase of thickness of insulating layer on NiTi, the anodic voltage increase. When applied voltage excess certain threshold, discharge spark appear on the surface of NiTi.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

440-445

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Miyazaki, medical and dental applications of shape memory alloys, in:K. Otsuka, C.M. Wayman (Eds), shape memory materials, Cambridge University press, Cambridge, uk, 1998, pp.267-281.

Google Scholar

[2] Morgan N B. Mater Sci Eng, 2004, 378: 16.

Google Scholar

[3] Duerig T A, Stockel D. Mater Sci Eng, 1999, 275: 149.

Google Scholar

[4] Rondelli G. Biomaterials, 1996, 17(20): (2003).

Google Scholar

[5] J.C. Wataha, N.L. O'Dell, B.B. Singh, M. Ghazi, G.M. Whitford P.E. Lockwood, J. Biomed. Mater. Res. 58 (2001) 537-544.

DOI: 10.1002/jbm.1052

Google Scholar

[6] Shabalovskaya S A. Bio-Med Mater Eng, 2002, 12(1): 69.

Google Scholar

[7] Uo M F, Yokoyama A et al. Biomaterials, 1999, 20(8): 747.

Google Scholar

[8] Bogdanski D M, Muller D et al. Biomaterials[J], 2002, 23(23): 4549.

Google Scholar

[9] G.S. Firstov, R.G. Vitchev, H. Kumar, B. Blanpain, J.V. Humbeeck, Biomaterials 23 (2002) 4863-4871.

DOI: 10.1016/s0142-9612(02)00244-2

Google Scholar

[10] Z.D. Cui, H.C. Man, X.J. Yang, Surf. Coat. Technol. 192 (2005)347-352.

Google Scholar

[11] O. Prymak, D. Bogdansk, S.A. Esenwein, M. Köller, M. Epple, Mat. -wiss. u. Wermstkfftech 35 (2004) 346-351.

DOI: 10.1002/mawe.200400753

Google Scholar

[12] M.H. Wong, F.T. Cheng, H.C. Man, Appl. Surf. Sci. 253 (2007)7527-7534.

Google Scholar

[13] J.X. Liu, D.Z. Yang, F. Shi, Y.J. Cai, Thin Solid Films 429 (2003) 225-230.

Google Scholar

[14] K.W.K. Yeung, R.Y.L. Chan, K.O. Lam, P.K. Chu, Surf. Coat. Technol. 202 (2007) 1247-1251.

Google Scholar

[15] Y. Cheng, Y.F. Zheng, Surf. Coat. Technol. 201 (2005) 6869-6873.

Google Scholar

[16] YEROKHIN A L, NIE X, LEYLAND A, et al. Surface and Coatings Technology, 1999, 122 (2/3): 73-93.

Google Scholar

[17] SUL Y T. Biomaterials, 2003, 24 (22): 3893-3907.

Google Scholar

[18] Xu, J. L., Zhong, Z. C., Yu, D. Z., etal, Journal of Materials Science-Materials in Medicine 2012, 23 (12).

Google Scholar

[19] Hairui, W., Fu, L., Yanpeng, Z., etal, Surface & Coatings Technology . 2012, 206 (19-20): 4054.

Google Scholar

[20] Huan, Z., Fratila-Apachitei, L. E., Apachitei, I., etal, Applied Surface Science 2013, 274: 266.

DOI: 10.1016/j.apsusc.2013.03.034

Google Scholar

[21] Jiang X.Y. Proceeding of Fifth China National Conference on Functional Materials and Applications 2004: 2355.

Google Scholar

[22] Xu taotao. Study of growth mechanism and technology on micro-arc oxidation of Mg alloy Yan shan University, 2011: 41.

Google Scholar

[23] X.L. Zhu,J. Chen,L. Scheideler,R. reichi and J. Geis-Gerstorfer. Biomaterials, 2004, 25, 4087.

Google Scholar