Matrix Elasticity Affects Integrin Expression in Human Umbilical Cord-Derived Mesenchymal Stem Cells

Article Preview

Abstract:

Mesenchymal stem cells (MSCs) are a powerful cellular alternative for regenerative medicine and tissue engineering applications due to their multipotency. It is becoming increasingly clear that elasticity of extracellular matrix (ECM) has a profound effect on cell phenotype including adhesion, proliferation and differentiation. Integrins are considered to be important mechanoreceptors in mechanotransduction. While numerous studies have focused on α2, β1 and β3 integrin involvement in substrate stiffness-driven commitment of bone marrow MSCs, comparatively little is known about the change of α5β1 integrin expression in human umbilical cord-derived mesenchymal stem cells (hUCMSCs) on substrates of variable stiffness. We plated hUCMSCs on fibronectin coated polyacrylamide hydrogels with elasticity corresponding to Young’s modulus ranging from 3 to 65 kPa. Our results showed that hUCMSCs displayed different morphologies on substrates of varying stiffness. Cells led to branched morphology similar to that of nerve cells when cultured on soft matrices, while cells became more spread and presented polygonal shapes on stiff substrates. Furthermore, hUCMSCs expressed α5 integrin both on soft substrates and stiff substrates, and the expression levels on the two substrates were similar. The total β1 integrin (including both active and inactive) was higher in hUCMSCs grown on the stiff substrate than that of grown on soft substrates, whereas the activated β1 integrin level on stiff substrates was distinctly lower than that of grown on soft substrates. In conclusion, α5β1 integrin expression in hUCMSCs is dependent on matrix elasticity. The results from this study will provide insight into the role of α5β1 integrin in matrix elasticity-regulated morphologies changes of stem cells and have implication for understanding the mechanism of physical induced lineage specification.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

412-423

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Anzalone, M. Lo Iacono, S. Corrao, F. Magno, T. Loria, F. Cappello, G. Zummo, F. Farina, G. La Rocca, New Emerging Potentials for Human Wharton's Jelly Mesenchymal Stem Cells: Immunological Features and Hepatocyte-Like Differentiative Capacity, Stem Cells Dev. 19 (2010).

DOI: 10.1089/scd.2009.0299

Google Scholar

[2] R. Anzalone, M. Lo Iacono, T, Loria, A, Di Stefano, P, Giannuzzi, F, Farina, G, La Rocca, Wharton's Jelly Mesenchymal Stem Cells as Candidates for Beta Cells Regeneration: Extending the Differentiative and Immunomodulatory Benefits of Adult Mesenchymal Stem Cells for the Treatment of Type 1 Diabetes, Stem Cell Rev Rep. 7(2011).

DOI: 10.1007/s12015-010-9196-4

Google Scholar

[3] H.S. Wang, S.C. Hung, S.T. Peng, C.C. Huang, H.M. Wei, Y.J. Guo, Y.S. Fu, M.C. Lai, C.C. Chen, Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord, Stem Cells. 22(2004) 1330-1337.

DOI: 10.1634/stemcells.2004-0013

Google Scholar

[4] M. Witkowska-Zimny, E. Wrobel, Perinatal sources of mesenchymal stem cells: Wharton's jelly, amnion and chorion, Cell Mol Biol Lett. 16(2011) 493-514.

DOI: 10.2478/s11658-011-0019-7

Google Scholar

[5] T. Yeung, P.C. Georges, L.A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W.Y. Ming, V. Weaver, P.A. Janmey, Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion, Cell Motil Cytoskel. 60(2005) 24-34.

DOI: 10.1002/cm.20041

Google Scholar

[6] C.M. Lo, H.B. Wang, M. Dembo, Y.L. Wang, Cell movement is guided by the rigidity of the substrate, Biophysical Journal. 79(2000) 144-152.

DOI: 10.1016/s0006-3495(00)76279-5

Google Scholar

[7] J.T. Smith, J.T. Elkin, W.M. Reichert, Directed cell migration on fibronectin gradients: Effect of gradient slope, Exp Cell Res. 312(2006) 2424-2432.

DOI: 10.1016/j.yexcr.2006.04.005

Google Scholar

[8] G. Giannone, M.P. Sheetz, Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways, Trends in cell biology. 16(2006) 213-223.

DOI: 10.1016/j.tcb.2006.02.005

Google Scholar

[9] A. Subramanian, H.Y. Lin, Crosslinked chitosan: Its physical properties and the effects of matrix stiffness on chondrocyte cell morphology and proliferation, Journal of Biomedical Materials Research Part A. 75A(2005) 742-753.

DOI: 10.1002/jbm.a.30489

Google Scholar

[10] S.R. Peyton, C.B. Raub, V.P. Keschrumrus, A.J. Putnam, The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells, Biomaterials. 27(2006) 4881-4893.

DOI: 10.1016/j.biomaterials.2006.05.012

Google Scholar

[11] A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification, Cell. 126(2006) 677-689.

DOI: 10.1016/j.cell.2006.06.044

Google Scholar

[12] C.H. Damsky, D. Ilic, Integrin signaling: it's where the action is, Curr Opin Cell Biol. 14(2002) 594-602.

Google Scholar

[13] R.O. Hynes, Integrins: Bidirectional, allosteric signaling machines, Cell. 110(2002) 673-687.

Google Scholar

[14] E.H.J. Danen, A. Sonnenberg, Integrins in regulation of tissue development and function, J Pathol. 200(2003) 471-480.

DOI: 10.1002/path.1416

Google Scholar

[15] H.Y. Yu, Y.S. Lui, S.J. Xiong, W.S. Leong, F. Wen, H. Nurkahfianto, S. Rana, D.T. Leong, K.W. Ng, L.P. Tan, Insights into the Role of Focal Adhesion Modulation in Myogenic Differentiation of Human Mesenchymal Stem Cells, Stem Cells Dev. 22(2013).

DOI: 10.1089/scd.2012.0160

Google Scholar

[16] Y.R. Shih, K.F. Tseng, H.Y. Lai, C.H. Lin, O.K. Lee, Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells, J Bone Miner Res. 26(2011) 730-738.

DOI: 10.1002/jbmr.278

Google Scholar

[17] M. Larsen, V.V. Artym, J.A. Green, K.M. Yamada, The matrix reorganized: extracellular matrix remodeling and integrin signaling, Curr Opin Cell Biol. 18(2006) 463-471.

DOI: 10.1016/j.ceb.2006.08.009

Google Scholar

[18] S.N. Stephansson, B.A. Byers, A.J. Garcia, Enhanced expression of the osteoblastic phenotype on substrates that modulate fibronectin conformation and integrin receptor binding, Biomaterials. 23(2002) 2527-2534.

DOI: 10.1016/s0142-9612(01)00387-8

Google Scholar

[19] B.G. Keselowsky, L. Wang, Z. Schwartz, A.J. Garcia, B.D. Boyan, Integrin alpha(5) controls osteoblastic proliferation and differentiation responses to titanium substrates presenting different roughness characteristics in a roughness independent manner, Journal of Biomedical Materials Research Part A. 80A (2007).

DOI: 10.1002/jbm.a.30898

Google Scholar

[20] D. Docheva, C. Popov, W. Mutschler, M. Schieker, Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system, J Cell Mol Med. 11(2007) 21-38.

DOI: 10.1111/j.1582-4934.2007.00001.x

Google Scholar

[21] J.C. Friedland, M.H. Lee, D. Boettiger, Mechanically Activated Integrin Switch Controls alpha(5)beta(1) Function, Science. 323(2009) 642-644.

DOI: 10.1126/science.1168441

Google Scholar

[22] L.Y. Liu, C. Zong, B. Li, D. Shen, Z.H. Tang, J.R. Chen, Q. Zheng, X.M. Tong, C.Y. Gao, J.F. Wang, The interaction between beta 1 integrins and ERK1/2 in osteogenic differentiation of human mesenchymal stem cells under fluid shear stress modelled by a perfusion system, J Tissue Eng Regen M. 8(2014).

DOI: 10.1002/term.1498

Google Scholar

[23] Z. Hamidouche, O. Fromigue, J. Ringe, T. Haupl, P. Vaudin, J.C. Pages, S. Srouji, E. Livne, P.J. Marie, Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis, Proc Natl Acad Sci U S A. 106(2009).

DOI: 10.1016/j.bone.2009.03.058

Google Scholar

[24] R.J. Pelham, Jr., Y. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A, 94(1997) 13661-13665.

DOI: 10.1073/pnas.94.25.13661

Google Scholar

[25] K. Lee, Q.K. Chen, C. Lui, M.A. Cichon, D.C. Radisky, C.M. Nelson, Matrix compliance regulates Rac1b localization, NADPH oxidase assembly, and epithelial-mesenchymal transition, Mol Biol Cell. 23(2012) 4097-4108.

DOI: 10.1091/mbc.e12-02-0166

Google Scholar

[26] Y.L. Wang, R.J. Pelham, Jr., Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells, Methods Enzymol. 298(1998) 489-496.

DOI: 10.1016/s0076-6879(98)98041-7

Google Scholar

[27] C.E. Kandow, P.C. Georges, P.A. Janmey, K.A. Beningo, Polyacrylamide hydrogels for cell mechanics: steps toward optimization and alternative uses, Methods Cell Biol. 83(2007) 29-46.

DOI: 10.1016/s0091-679x(07)83002-0

Google Scholar

[28] K. Ghosh, Z. Pan, E. Guan, S.R. Ge, Y.J. Liu, T. Nakamura, X.D. Ren, M. Rafailovich, R.A.F. Clark, Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties, Biomaterials. 28(2007) 671-679.

DOI: 10.1016/j.biomaterials.2006.09.038

Google Scholar

[29] A.S. Rowlands, P.A. George, J.J. Cooper-White, Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation, Am J Physiol Cell Physiol. 295(2008) C1037-1044.

DOI: 10.1152/ajpcell.67.2008

Google Scholar

[30] J. Lee, A.A. Abdeen, D. Zhang, K.A. Kilian, Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition, Biomaterials. 34(2013) 8140-8148.

DOI: 10.1016/j.biomaterials.2013.07.074

Google Scholar

[31] R. McBeath, D.M. Pirone, C.M. Nelson, K. Bhadriraju, C.S. Chen, Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment, Developmental Cell. 6(2004) 483-495.

DOI: 10.1016/s1534-5807(04)00075-9

Google Scholar

[32] R.K. Assoian, E.A. Klein, Growth control by intracellular tension and extracellular stiffness, Trends in Cell Biology. 18(2008) 347-352.

DOI: 10.1016/j.tcb.2008.05.002

Google Scholar

[33] A.L. Zajac, D.E. Discher, Cell differentiation through tissue elasticity-coupled, myosin-driven remodeling, Curr Opin Cell Biol. 20(2008) 609-615.

DOI: 10.1016/j.ceb.2008.09.006

Google Scholar

[34] W.A. Comisar, N.H. Kazmers, D.J. Mooney, J.J. Linderman, Engineering RGD nanopatterned hydrogels to control preosteoblast behavior: A combined computational and experimental approach, Biomaterials. 28(2007) 4409-4417.

DOI: 10.1016/j.biomaterials.2007.06.018

Google Scholar

[35] Z. Hamidouche, O. Fromigue, J. Ringe, T. Haupl, P.J. Marie, Crosstalks between integrin alpha 5 and IGF2/IGFBP2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiation, Bmc Cell Biol. 11(2010) 44.

DOI: 10.1016/j.bone.2010.04.281

Google Scholar

[36] S. Srouji, D. Ben-David, O. Fromigue, P. Vaudin, G. Kuhn, R. Muller, E. Livne, P.J. Marie, Lentiviral-Mediated Integrin alpha 5 Expression in Human Adult Mesenchymal Stromal Cells Promotes Bone Repair in Mouse Cranial and Long-Bone Defects, Hum Gene Ther. 23 (2012).

DOI: 10.1089/hum.2011.059

Google Scholar

[37] M. Lanniel, E. Huq, S. Allen, L. Buttery, P.M. Williams, M.R. Alexander, Substrate induced differentiation of human mesenchymal stem cells on hydrogels with modified surface chemistry and controlled modulus, Soft Matter. 7(2011) 6501-6514.

DOI: 10.1039/c1sm05167a

Google Scholar

[38] K.L. Goh, J.T. Yang, R.O. Hynes, Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos, Development. 124(1997) 4309-4319.

DOI: 10.1242/dev.124.21.4309

Google Scholar

[39] H. Haack, R.O. Hynes, Integrin receptors are required for cell survival and proliferation during development of the peripheral glial lineage, Dev Biol. 233(2001) 38-55.

DOI: 10.1006/dbio.2001.0213

Google Scholar

[40] A. Mittal, M. Pulina, S.Y. Hou, S. Astrof, Fibronectin and integrin alpha 5 play essential roles in the development of the cardiac neural crest, Mech Develop. 127(2010) 472-484.

DOI: 10.1016/j.mod.2010.08.005

Google Scholar

[41] J.R. Tse, A.J. Engler, Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate, Plos One. 6(2011) e15978.

DOI: 10.1371/journal.pone.0015978

Google Scholar

[42] J. Du, X.F. Chen, X.D. Liang, G.Y. Zhang, J. Xu, L.R. He, Q.Y. Zhan, X.Q. Feng, Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity, P Natl Acad Sci USA. 108(2011).

DOI: 10.1073/pnas.1106467108

Google Scholar

[43] O.F. Zouani, J. Kalisky, E. Ibarboure, M.C. Durrieu, Effect of BMP-2 from matrices of different stiffnesses for the modulation of stem cell fate, Biomaterials. 34(2013) 2157-2166.

DOI: 10.1016/j.biomaterials.2012.12.007

Google Scholar

[44] Y. Takeuchi, M. Suzawa, T. Kikuchi, E. Nishida, T. Fujita, T. Matsumoto, Differentiation and transforming growth factor-beta receptor down-regulation by collagen-alpha2beta1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells, J Biol Chem. 272(1997).

DOI: 10.1074/jbc.272.46.29309

Google Scholar