[1]
R. Anzalone, M. Lo Iacono, S. Corrao, F. Magno, T. Loria, F. Cappello, G. Zummo, F. Farina, G. La Rocca, New Emerging Potentials for Human Wharton's Jelly Mesenchymal Stem Cells: Immunological Features and Hepatocyte-Like Differentiative Capacity, Stem Cells Dev. 19 (2010).
DOI: 10.1089/scd.2009.0299
Google Scholar
[2]
R. Anzalone, M. Lo Iacono, T, Loria, A, Di Stefano, P, Giannuzzi, F, Farina, G, La Rocca, Wharton's Jelly Mesenchymal Stem Cells as Candidates for Beta Cells Regeneration: Extending the Differentiative and Immunomodulatory Benefits of Adult Mesenchymal Stem Cells for the Treatment of Type 1 Diabetes, Stem Cell Rev Rep. 7(2011).
DOI: 10.1007/s12015-010-9196-4
Google Scholar
[3]
H.S. Wang, S.C. Hung, S.T. Peng, C.C. Huang, H.M. Wei, Y.J. Guo, Y.S. Fu, M.C. Lai, C.C. Chen, Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord, Stem Cells. 22(2004) 1330-1337.
DOI: 10.1634/stemcells.2004-0013
Google Scholar
[4]
M. Witkowska-Zimny, E. Wrobel, Perinatal sources of mesenchymal stem cells: Wharton's jelly, amnion and chorion, Cell Mol Biol Lett. 16(2011) 493-514.
DOI: 10.2478/s11658-011-0019-7
Google Scholar
[5]
T. Yeung, P.C. Georges, L.A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W.Y. Ming, V. Weaver, P.A. Janmey, Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion, Cell Motil Cytoskel. 60(2005) 24-34.
DOI: 10.1002/cm.20041
Google Scholar
[6]
C.M. Lo, H.B. Wang, M. Dembo, Y.L. Wang, Cell movement is guided by the rigidity of the substrate, Biophysical Journal. 79(2000) 144-152.
DOI: 10.1016/s0006-3495(00)76279-5
Google Scholar
[7]
J.T. Smith, J.T. Elkin, W.M. Reichert, Directed cell migration on fibronectin gradients: Effect of gradient slope, Exp Cell Res. 312(2006) 2424-2432.
DOI: 10.1016/j.yexcr.2006.04.005
Google Scholar
[8]
G. Giannone, M.P. Sheetz, Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways, Trends in cell biology. 16(2006) 213-223.
DOI: 10.1016/j.tcb.2006.02.005
Google Scholar
[9]
A. Subramanian, H.Y. Lin, Crosslinked chitosan: Its physical properties and the effects of matrix stiffness on chondrocyte cell morphology and proliferation, Journal of Biomedical Materials Research Part A. 75A(2005) 742-753.
DOI: 10.1002/jbm.a.30489
Google Scholar
[10]
S.R. Peyton, C.B. Raub, V.P. Keschrumrus, A.J. Putnam, The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells, Biomaterials. 27(2006) 4881-4893.
DOI: 10.1016/j.biomaterials.2006.05.012
Google Scholar
[11]
A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification, Cell. 126(2006) 677-689.
DOI: 10.1016/j.cell.2006.06.044
Google Scholar
[12]
C.H. Damsky, D. Ilic, Integrin signaling: it's where the action is, Curr Opin Cell Biol. 14(2002) 594-602.
Google Scholar
[13]
R.O. Hynes, Integrins: Bidirectional, allosteric signaling machines, Cell. 110(2002) 673-687.
Google Scholar
[14]
E.H.J. Danen, A. Sonnenberg, Integrins in regulation of tissue development and function, J Pathol. 200(2003) 471-480.
DOI: 10.1002/path.1416
Google Scholar
[15]
H.Y. Yu, Y.S. Lui, S.J. Xiong, W.S. Leong, F. Wen, H. Nurkahfianto, S. Rana, D.T. Leong, K.W. Ng, L.P. Tan, Insights into the Role of Focal Adhesion Modulation in Myogenic Differentiation of Human Mesenchymal Stem Cells, Stem Cells Dev. 22(2013).
DOI: 10.1089/scd.2012.0160
Google Scholar
[16]
Y.R. Shih, K.F. Tseng, H.Y. Lai, C.H. Lin, O.K. Lee, Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells, J Bone Miner Res. 26(2011) 730-738.
DOI: 10.1002/jbmr.278
Google Scholar
[17]
M. Larsen, V.V. Artym, J.A. Green, K.M. Yamada, The matrix reorganized: extracellular matrix remodeling and integrin signaling, Curr Opin Cell Biol. 18(2006) 463-471.
DOI: 10.1016/j.ceb.2006.08.009
Google Scholar
[18]
S.N. Stephansson, B.A. Byers, A.J. Garcia, Enhanced expression of the osteoblastic phenotype on substrates that modulate fibronectin conformation and integrin receptor binding, Biomaterials. 23(2002) 2527-2534.
DOI: 10.1016/s0142-9612(01)00387-8
Google Scholar
[19]
B.G. Keselowsky, L. Wang, Z. Schwartz, A.J. Garcia, B.D. Boyan, Integrin alpha(5) controls osteoblastic proliferation and differentiation responses to titanium substrates presenting different roughness characteristics in a roughness independent manner, Journal of Biomedical Materials Research Part A. 80A (2007).
DOI: 10.1002/jbm.a.30898
Google Scholar
[20]
D. Docheva, C. Popov, W. Mutschler, M. Schieker, Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system, J Cell Mol Med. 11(2007) 21-38.
DOI: 10.1111/j.1582-4934.2007.00001.x
Google Scholar
[21]
J.C. Friedland, M.H. Lee, D. Boettiger, Mechanically Activated Integrin Switch Controls alpha(5)beta(1) Function, Science. 323(2009) 642-644.
DOI: 10.1126/science.1168441
Google Scholar
[22]
L.Y. Liu, C. Zong, B. Li, D. Shen, Z.H. Tang, J.R. Chen, Q. Zheng, X.M. Tong, C.Y. Gao, J.F. Wang, The interaction between beta 1 integrins and ERK1/2 in osteogenic differentiation of human mesenchymal stem cells under fluid shear stress modelled by a perfusion system, J Tissue Eng Regen M. 8(2014).
DOI: 10.1002/term.1498
Google Scholar
[23]
Z. Hamidouche, O. Fromigue, J. Ringe, T. Haupl, P. Vaudin, J.C. Pages, S. Srouji, E. Livne, P.J. Marie, Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis, Proc Natl Acad Sci U S A. 106(2009).
DOI: 10.1016/j.bone.2009.03.058
Google Scholar
[24]
R.J. Pelham, Jr., Y. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A, 94(1997) 13661-13665.
DOI: 10.1073/pnas.94.25.13661
Google Scholar
[25]
K. Lee, Q.K. Chen, C. Lui, M.A. Cichon, D.C. Radisky, C.M. Nelson, Matrix compliance regulates Rac1b localization, NADPH oxidase assembly, and epithelial-mesenchymal transition, Mol Biol Cell. 23(2012) 4097-4108.
DOI: 10.1091/mbc.e12-02-0166
Google Scholar
[26]
Y.L. Wang, R.J. Pelham, Jr., Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells, Methods Enzymol. 298(1998) 489-496.
DOI: 10.1016/s0076-6879(98)98041-7
Google Scholar
[27]
C.E. Kandow, P.C. Georges, P.A. Janmey, K.A. Beningo, Polyacrylamide hydrogels for cell mechanics: steps toward optimization and alternative uses, Methods Cell Biol. 83(2007) 29-46.
DOI: 10.1016/s0091-679x(07)83002-0
Google Scholar
[28]
K. Ghosh, Z. Pan, E. Guan, S.R. Ge, Y.J. Liu, T. Nakamura, X.D. Ren, M. Rafailovich, R.A.F. Clark, Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties, Biomaterials. 28(2007) 671-679.
DOI: 10.1016/j.biomaterials.2006.09.038
Google Scholar
[29]
A.S. Rowlands, P.A. George, J.J. Cooper-White, Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation, Am J Physiol Cell Physiol. 295(2008) C1037-1044.
DOI: 10.1152/ajpcell.67.2008
Google Scholar
[30]
J. Lee, A.A. Abdeen, D. Zhang, K.A. Kilian, Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition, Biomaterials. 34(2013) 8140-8148.
DOI: 10.1016/j.biomaterials.2013.07.074
Google Scholar
[31]
R. McBeath, D.M. Pirone, C.M. Nelson, K. Bhadriraju, C.S. Chen, Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment, Developmental Cell. 6(2004) 483-495.
DOI: 10.1016/s1534-5807(04)00075-9
Google Scholar
[32]
R.K. Assoian, E.A. Klein, Growth control by intracellular tension and extracellular stiffness, Trends in Cell Biology. 18(2008) 347-352.
DOI: 10.1016/j.tcb.2008.05.002
Google Scholar
[33]
A.L. Zajac, D.E. Discher, Cell differentiation through tissue elasticity-coupled, myosin-driven remodeling, Curr Opin Cell Biol. 20(2008) 609-615.
DOI: 10.1016/j.ceb.2008.09.006
Google Scholar
[34]
W.A. Comisar, N.H. Kazmers, D.J. Mooney, J.J. Linderman, Engineering RGD nanopatterned hydrogels to control preosteoblast behavior: A combined computational and experimental approach, Biomaterials. 28(2007) 4409-4417.
DOI: 10.1016/j.biomaterials.2007.06.018
Google Scholar
[35]
Z. Hamidouche, O. Fromigue, J. Ringe, T. Haupl, P.J. Marie, Crosstalks between integrin alpha 5 and IGF2/IGFBP2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiation, Bmc Cell Biol. 11(2010) 44.
DOI: 10.1016/j.bone.2010.04.281
Google Scholar
[36]
S. Srouji, D. Ben-David, O. Fromigue, P. Vaudin, G. Kuhn, R. Muller, E. Livne, P.J. Marie, Lentiviral-Mediated Integrin alpha 5 Expression in Human Adult Mesenchymal Stromal Cells Promotes Bone Repair in Mouse Cranial and Long-Bone Defects, Hum Gene Ther. 23 (2012).
DOI: 10.1089/hum.2011.059
Google Scholar
[37]
M. Lanniel, E. Huq, S. Allen, L. Buttery, P.M. Williams, M.R. Alexander, Substrate induced differentiation of human mesenchymal stem cells on hydrogels with modified surface chemistry and controlled modulus, Soft Matter. 7(2011) 6501-6514.
DOI: 10.1039/c1sm05167a
Google Scholar
[38]
K.L. Goh, J.T. Yang, R.O. Hynes, Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos, Development. 124(1997) 4309-4319.
DOI: 10.1242/dev.124.21.4309
Google Scholar
[39]
H. Haack, R.O. Hynes, Integrin receptors are required for cell survival and proliferation during development of the peripheral glial lineage, Dev Biol. 233(2001) 38-55.
DOI: 10.1006/dbio.2001.0213
Google Scholar
[40]
A. Mittal, M. Pulina, S.Y. Hou, S. Astrof, Fibronectin and integrin alpha 5 play essential roles in the development of the cardiac neural crest, Mech Develop. 127(2010) 472-484.
DOI: 10.1016/j.mod.2010.08.005
Google Scholar
[41]
J.R. Tse, A.J. Engler, Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate, Plos One. 6(2011) e15978.
DOI: 10.1371/journal.pone.0015978
Google Scholar
[42]
J. Du, X.F. Chen, X.D. Liang, G.Y. Zhang, J. Xu, L.R. He, Q.Y. Zhan, X.Q. Feng, Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity, P Natl Acad Sci USA. 108(2011).
DOI: 10.1073/pnas.1106467108
Google Scholar
[43]
O.F. Zouani, J. Kalisky, E. Ibarboure, M.C. Durrieu, Effect of BMP-2 from matrices of different stiffnesses for the modulation of stem cell fate, Biomaterials. 34(2013) 2157-2166.
DOI: 10.1016/j.biomaterials.2012.12.007
Google Scholar
[44]
Y. Takeuchi, M. Suzawa, T. Kikuchi, E. Nishida, T. Fujita, T. Matsumoto, Differentiation and transforming growth factor-beta receptor down-regulation by collagen-alpha2beta1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells, J Biol Chem. 272(1997).
DOI: 10.1074/jbc.272.46.29309
Google Scholar