One-Step Synthesis of Water-Soluble Fluorescent Carbon Dots

Article Preview

Abstract:

Water-soluble carbon dots (CDs) with high yield were synthesized by a facile, one-step incomplete pyrolytic route under nitrogen atmosphere or air using ammonium citrate as carbon source. Photoluminescence (PL) spectrum, Fourier transform infrared (FTIR) absorption and high-resolution transmission electron microscopy (HRTEM) were used to determine the characteristics of the CDs. Though CDs could be prepared from 150 oC to 400 oC, the highest yield of CDs (17.5%) was achieved at the heating temperature of 150 oC in air, so did the relative quantum yield. The as-prepared CDs showed excellent biocompatibility and had been tentatively used in cell imaging.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

434-439

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. T. Yang, L. Cao, P. G. Luo, F. Lu, X. Wang, H. Wang, M. J. Meziani, Y. Liu, G. Qi and Y. P. Sun: J. Am. Chem. Soc. Vol. 131 (2009), p.11308.

Google Scholar

[2] F. Wang, Y. H. Chen, C. Y. Liu and D. G. Ma: Chem. Commun. Vol. 47 (2011), p.3502.

Google Scholar

[3] Q. Li, T. Y. Ohulchanskyy, R. L. Liu, K. Koynov, D. Q. Wu, A. Best, R. Kumar, A. Bonoiu and P. N. Prasad: J. Phys. Chem. C Vol. 114 (2010), p.12062.

DOI: 10.1021/jp911539r

Google Scholar

[4] S. N. Barker and G. A. Barker: Angew. Chem., Int. Ed. Vol. 49 (2010), p.6726.

Google Scholar

[5] X. Y. Xu, R. Ray, Y. L. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens: J. Am. Chem. Soc. Vol. 126 (2004), p.12736.

DOI: 10.1021/ja040082h

Google Scholar

[6] L. Cao, X. Wang, M. J. Meziani, F. S. Lu, H. F. Wang, P. J. G. Luo, Y. Lin, B. A. Harruff, L. M. Veca, D. Murray, S. Y. Xie and Y. P. Sun: J. Am. Chem. Soc. Vol. 129 (2007), p.11318.

DOI: 10.1021/ja073527l

Google Scholar

[7] S. L. Hu, K. Y. Niu, J. Sun, J. Yang, N. Q. Zhao and X. W. Du: J. Mater. Chem. Vol. 19 (2009), p.484.

Google Scholar

[8] Y. P. Sun, X. Wang, F. S. Lu, L. Cao, M. J. Meziani, P. J. G. Luo, L. R. Gu and L. M. Veca: J. Phys. Chem. C Vol. 112 (2008), p.18295.

Google Scholar

[9] Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. F. Wang, P. J. G. Luo, H. Yang, M. E. Kose, B. L. Chen, L. M. Veca and S. Y. Xie: J. Am. Chem. Soc. Vol. 128 (2006), p.7756.

DOI: 10.1021/ja062677d

Google Scholar

[10] X. Wang, L. Cao, F. S. Lu, M. J. Meziani, H. Li, G. Qi, B. Zhou, B. A. Harruff, F. Kermarrec and Y. P. Sun: Chem. Commun. Vol. 48 (2009), p.3774.

DOI: 10.1039/b906252a

Google Scholar

[11] S. T. Yang, X. Wang, H. Wang, F. Lu, P. G. Luo, L. Cao, M. J. Meziani, J. H. Liu, Y. Liu, M. Chen, Y. Huang and Y. P. Sun: J. Phys. Chem. C Vol. 113 (2009), p.18110.

Google Scholar

[12] Q. L. Zhao, Z. L. Zhang, B. H. Huang, J. Peng, M. Zhang and D. W. Pang: Chem. Commun. Vol. 41 (2008), p.5116.

Google Scholar

[13] L. Y. Zheng, Y. W. Chi, Y. Q. Dong, J. P. Lin and B. B. Wang: J. Am. Chem. Soc. Vol. 131 (2009), p.4564.

Google Scholar

[14] J. G. Zhou, C. Booker, R. Y. Li, X. T. Zhou, T. K. Sham, X. L. Sun and Z. F. Ding: J. Am. Chem. Soc. Vol. 129 (2007), p.744.

Google Scholar

[15] H. P. Liu, T. Ye and C. D. Mao: Angew. Chem., Int. Ed. Vol. 46 (2007), p.6473.

Google Scholar

[16] L. Tian, D. Ghosh, W. Chen, S. Pradhan, X. Chang and S. Chen: Chem. Mater. Vol. 21 (2009), p.2803.

Google Scholar

[17] Y. Q. Dong, N. N. Zhou, X. M. Lin, J. P. Lin, Y. U. Chi and G. Chen: Chem. Mater. Vol. 22 (2010), p.5895.

Google Scholar

[18] Q. L. Wang, H. Z. Zheng, Y. J. Long, L. Y. Zhang, M. Gao and W. J. Bai: Carbon, Vol. 49 (2011), p.3134.

Google Scholar

[19] A. Jaiswal, S. S. Ghosh and A. Chattopadhyay: Chem. Commun. Vol. 48 (2012), p.407.

Google Scholar

[20] Z. Lin, W. Xue, H. Chen and J. M. Lin: Chem. Commun. Vol. 48 (2012), p.1051.

Google Scholar

[21] C. Liu, P. Zhang, F. Tian, W. Li, F. Li and W. Liu: J. Mater. Chem. Vol. 21 (2011), p.13163.

Google Scholar

[22] X. Wang, K. Qu, B. Xu, J. Ren and X. Qu: J. Mater. Chem. Vol. 21 (2011), p.2445.

Google Scholar

[23] A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides and E. P. Giannelis: Small Vol 4 (208), p.455.

DOI: 10.1002/smll.200700578

Google Scholar

[24] Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang and Y. Liu: Chem. Commun. Vol. 48 (2012), p.380.

Google Scholar

[25] S. F. Chin, S. N. A. M. Yazid, S. C. Pang and S. M. Ng: Mater. Lett. Vol. 85 (2012), p.50.

Google Scholar

[26] X. Zhai, P. Zhang, C. Liu, T. Bai, W. Li, L. Dai and W. Liu: Chem. Commun. Vol. 48 (2012), p.7955.

Google Scholar

[27] S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang and B. Yang: Angew. Chem., Int. Ed. Vol. 14 (2013), p.3953.

Google Scholar

[28] F. Li, C. Liu, F. Tian, J. Yang and Z. Li: Advanced Materials Research, Vol. 800 (2013): p.312.

Google Scholar