Surface Plasmon Enhanced Photoluminescence of the Rubrene Film by Silver Nanoparticles

Article Preview

Abstract:

Silver nanoparticles (Ag NPs) thin film were fabricated by radio-frequency (RF) magnetron sputtering on the quartz substrates in different sputtering time, then covered with a layer of rubrene by means of thermal evaporation. The sputtering time for preparation of Ag NPs could be tuned to increase the spectral overlap between the emission spectra of rubrene and surface plasmon resonance spectra, so that the surface plasmon enhancement was improved. Using a Fluorescence spectrophotometer (FLS920), the photoluminescence (PL) intensity of the rubrene/Ag NPs thin film was up to 22 times higher than that as-deposited rubrene thin film. It is attributed to the energy transfer effect in the surface plasmon resonance coupling, the surface plasmons mediated emission, and light scattering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

54-60

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. K. Pandey, J. M. Nunzi, Upconversion injection in rubrene/perylene-diimide-heterostructure electroluminescent diodes, Appl. Phys. Lett. 90(2007) 263508-3.

DOI: 10.1063/1.2752540

Google Scholar

[2] A. M. C. Ng, A. B. Djurišic, W. K. Chan, J. M. Nunzi, Near infrared emission in rubrene: fullerene heterojunction devices, Chemical Physics Letters. 474(2009) 141-145.

DOI: 10.1016/j.cplett.2009.04.024

Google Scholar

[3] W. Y. Kim, Y. H. Kim, C. G. Jhun, R. Wood, P. Mascher, and C. B. Moon, Spectroscopic study of white organic light-emitting devices with various thicknesses of emissive layer, J. Appl. Phys. 111(2012) 014507-11.

DOI: 10.1063/1.3674321

Google Scholar

[4] M. S. Kim, E. H. Cho, D. H. Park, H. Jung, J. Bang and J. Joo, Tuning photoluminescence of organic rubrene nanoparticles through a hydrothermal process, Nanoscale Research Letters. 6(2011) 405-8.

DOI: 10.1186/1556-276x-6-405

Google Scholar

[5] Y. D. Han, J. W. Lee, D. H. Park, S. H. Yang, B. K. Kim, J. Kim, J. Joo, Core–shell nanoparticle of silver coated with light-emitting rubrene: Surface plasmon enhanced photoluminescence, Synthetic Metals. 161(2011) 2103-2106.

DOI: 10.1016/j.synthmet.2011.08.001

Google Scholar

[6] Stefan A. Maier. Plasmonics: fundamentals and applications, 2007 Springer.

Google Scholar

[7] W.U. Huynh, J. J. Dittmer, A.P. Hybrid Nanorod-Polymer Solar Cells, Alivisatos. Science. 295(2002) 2425-2427.

DOI: 10.1126/science.1069156

Google Scholar

[8] S. L. Pan, Z. J. Wang, and Lewis J. Rothberg, Enhancement of Adsorbed Dye Monolayer Fluorescence by a Silver Nanoparticle Overlayer, J. Phys. Chem. B. 110(2006) 17383-17387.

DOI: 10.1021/jp063191m

Google Scholar

[9] F. Liu, J. M. Nunzi, Enhanced organic light emitting diode and solar cell performances using silver nano-clusters, Organic Electronics. 13(2012) 1623-1632.

DOI: 10.1016/j.orgel.2012.04.027

Google Scholar

[10] Y. Chen, K. Munechika, I. J. L. Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, Excitation enhancement of CdSe quantum dots by single metal nanoparticles, Appl. Phys. Lett. 93(2008) 053106-3.

DOI: 10.1063/1.2956391

Google Scholar

[11] D. Y. Lei, J. Li, and H. C. Ong, Tunable surface plasmon mediated emission from semiconductors by using metal alloys, Appl. Phys. Lett. 91(2007) 021112-3.

DOI: 10.1063/1.2752770

Google Scholar

[12] W. A. Weimer and M. J. Dyer, Tunable surface plasmon resonance silver films, Appl. Phys. Lett. 79(2001) 3164-3166.

DOI: 10.1063/1.1416473

Google Scholar

[13] G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, R. P. V. Duyne, Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography, Nano Lett. 7(2007) 1947-(1952).

DOI: 10.1021/nl070648a

Google Scholar

[14] J. B. You, X. W. Zhang, Y. M. Fan, S. Qu, N. F. Chen, Surface plasmon enhanced ultraviolet emission from ZnO films deposited on Ag/Si(001) by magnetron sputtering, Appl. Phys. Lett. 91(2007) 231907-3.

DOI: 10.1063/1.2822404

Google Scholar

[15] Z. F. Li, J. Du, Q. Tang, F. Wang, J.B. Xu, Jimmy C. Yu, Induced Crystallization of Rubrene in Thin-Film Transistors, Adv. Mater. 22(2010) 3242–3246.

DOI: 10.1002/adma.201000786

Google Scholar

[16] C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, (1983).

Google Scholar

[17] S. Pillai, K. R. Catchpole, T. Trupke, M. A. Green, Surface plasmon enhanced silicon solar cells, J. Appl. Phys. 101(2007) 093105-8.

DOI: 10.1063/1.2734885

Google Scholar

[18] A. Liebsch. Surface plasmon dispersion of Ag, Phys. Rev. Lett. 71(1993) 145.

Google Scholar

[19] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff. Nature (London)1998, 391: 667.

Google Scholar

[20] J. R. Lakowicz, Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission, Anal. Biochem. 337(2005) 171-194.

DOI: 10.1016/j.ab.2004.11.026

Google Scholar