Influence of Composition and Microstructure on the Mechanical Properties of SiC Ceramic Fibers

Article Preview

Abstract:

In this work, the influences of composition and microstructure on the mechanical properties and thermal stability of SiC ceramic fibers were investigated. XPS, XRD, SEM, and element analysis were used to analyze the elemental composition and structural morphology. The contents of oxygen and free carbon influence the crystallinity of SiC fibers, which inhibit the grain growth of β-SiC. The reduction of tensile strength of the fibers sintered under temperatures above 1700°C is attributed to the appearance of massive defects on the outer surface of the fibers, which can be overcome by the change of sintering conditions of the pyrolysis fibers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

163-168

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Ishikawa, Advances in inorganic fibers, Adv. Polym. Sci. 178 (2005) 109-144.

Google Scholar

[2] N. Igawa, T. Taguchi, T. Nozawa, L. L. Snead, T. Hinoki, J. C. McLaughlin, Y. Katoh, S. Jitsukawa, A. Kohyama, Fabrication of SiC fiber reinforced SiC composite by chemical vapor infiltration for excellent mechanical properties, J. Phys. Chem. Solids. 66 (2005).

DOI: 10.1016/j.jpcs.2004.06.030

Google Scholar

[3] R.U. Hasse, and M. Kahlke, US Patent No. 5800157 (1998).

Google Scholar

[4] S. Yajima, Y. Hasegawa, J. Hayashi, M. Imura, Synthesis of continuous silicon carbide fiber with high tensile strength and high Young's modulus, part 1, synthesis of polycarbosilane as precursor, J. Mater. Sci. 13 (1978) 2569-2576.

DOI: 10.1007/bf02402743

Google Scholar

[5] S. Yajima, J. Hayashi, M. Omori, Continuous silicon carbide fibre of tensile strength, Chem. Lett. (1975) 931-934.

DOI: 10.1246/cl.1975.931

Google Scholar

[6] S. Yajima, K. Okamura, T. Matsuzawa, Anomalous characteristics of the microcrystalline state of SiC fibres, Nature. 279 (1979) 706-707.

DOI: 10.1038/279706a0

Google Scholar

[7] S. Yajima, T. Twai, Y. Yamamura, "Electrical resistivity of Si–Ti–C–O fibers after rapid heat treatment, J. Mater. Sci. 16 (1981), 1349-1355.

Google Scholar

[8] D. Schawaller, B. Clauß, M. R. Buchmeiser, Ceramic Filament Fibers – A Review, Macromol. Mater. Eng. 297 (2012) 502-522.

DOI: 10.1002/mame.201100364

Google Scholar

[9] M. D. Sacks, G. W. Scheiffele, M. Saleem, G. A. Staab, A. A. Morrone, T. J. Williams, Polymer-derived silicon carbide fibers with near-stoichiometric composition and low oxygen content, Mater. Res. Soc. Symp. Proc. 365 (1995) 3-10.

DOI: 10.1557/proc-365-3

Google Scholar

[10] Y. Hasegawa, M. Iimura, S. Yajima, Synthesis of continuous silicon carbide fibre, J. Mater. Sci. 15 (1980) 720-728.

DOI: 10.1007/bf00551739

Google Scholar

[11] E. Bouillon, D. Mocaer, J. F. Villeneuve, R. Pailler, R. Naslain, M. Monthioux, A. Oberlin, C. Guimon, G. Pfister, J. Mater. Sci. Composition-microstructure-property relationships in ceramic monofilaments resulting from the pyrolysis of a polycarbosilane precursor at 800 to 400 °C, 26 (1991).

DOI: 10.1007/bf00544661

Google Scholar

[12] B. Clauss, 'Fibers for Ceramic Matrix Composites', in Ceramic Matrix Composites (Ed., W. Krenkel), Wiley-VCH, Weinheim2008, 1.

Google Scholar

[13] S. Yajima, Special heat-resisting materials from organometallic polymers, Ceram. Bull. 62 (1983) 893-915.

Google Scholar

[14] K. Kumagawa, Y. Yamaoka, M. Shibuya, T. Yamanura, Thermal stability and chemical corrosion resistance of newly developed continuous Si-Zr-C-O Tyranno fibers, Ceram. Eng. Sci. Proc. 18 (1997) 113-118.

DOI: 10.1002/9780470294437.ch12

Google Scholar

[15] T. Ishikawa, Y. Kohtoku, K. Kumagawa, T. Yamamura, T. Nagasawa, High-Strength Alkali-Resistant Sintered SiC Fibre Stable to 2200℃, Nature. 391 (1998) 773-775.

DOI: 10.1038/35820

Google Scholar

[16] T. Ishikawa, S. Kajii, T. Hisayuki, K. Matsunaga, T. Hogami, Y. Kohtoku, New type of sintered SiC fiber and its composite material, Key Eng. Mater. 15 (1995) 164-165.

DOI: 10.4028/www.scientific.net/kem.164-165.15

Google Scholar

[17] D. C. Deleeuw, J. Lipowitz, J. A. Rabe, (Dow Corning Corporation), US 5268336 (1990).

Google Scholar

[18] D. R. Bujalski, G. A. Zank, T. D. Barnard, (Dow CorningCorporation), US 5863848 (1991).

Google Scholar

[19] P. Le Coustumer, M. Monthioux, A. Oberlin, Understanding Nicalon® fibre, J. Eur. Ceram. Soc. 11 (1993) 95-105.

DOI: 10.1016/0955-2219(93)90040-x

Google Scholar

[20] G. Simon, A. R. Bunsell, Creep behaviour and structural characterization at high temperature of Nicalon SiC fibres, J. Mater. Sci. 19(1984) 3658-3670.

DOI: 10.1007/bf02396938

Google Scholar

[21] T. Mah, N. L. Hecht, D. E. McCullum, J. R. Hoenigman, H. M. Kim, A. P. Katz, H. A. Lipsitt, Thermal stability of SiC fibres (Nicalon®), J. Mater. Sci. 19 (1984) 1191-1201.

DOI: 10.1007/bf01120029

Google Scholar

[22] M. -H. Berger, N. Hochet, A. R. Bunsell, Microstructure and thermo-mechanical stability of a low-oxygen Nicalon fibre, J. Microsc. 177 (1995) 230-241.

DOI: 10.1111/j.1365-2818.1995.tb03554.x

Google Scholar

[23] T. Taki, K. Okamura, M. Sato, T. Seguchi, S. Kawanishi, A study on the electron irradiation curing mechanism of polycarbosilane fibres by solid-state29Si high-resolution nuclear magnetic resonance spectroscopy, J. Mater. Sci. Lett. 7 (1988).

DOI: 10.1007/bf01730172

Google Scholar

[24] J. J. Sha, T. Hinoki, A. Kohyama, Microstructure and mechanical properties of Hi-Nicalon™ Type S fibers annealed and crept in various oxygen partial pressures, Mater. Charact. 60 (2009) 796-802.

DOI: 10.1016/j.matchar.2009.01.017

Google Scholar

[25] M. Takeda, A. Urano, J. Sakamoto, Y. Imai, Microstructure and oxidation behavior of silicon carbide fibers derived from polycarbosilane, J. Am. Ceram. Soc. 83 (2000) 1171-1176.

DOI: 10.1111/j.1151-2916.2000.tb01350.x

Google Scholar

[26] C. Sauder, J. Lamon, Tensile creep behavior of SiC-based fibers with a low oxygen content, J. Am. Ceram. Soc. 90 (2007) 1146-1156.

DOI: 10.1111/j.1551-2916.2007.01535.x

Google Scholar

[27] H. Ichikawa, K. Okamura, T. Seguchi, Oxygen-free ceramic fibers from organosilicon precursors and e-beam curing, Ceram. Trans. 58 (1995) 65-74.

Google Scholar

[28] Y. Yamamura, T. Ishikawa, M. Shibuya, T. Hisayuki, K. Okamura, Development of a new continuous Si-Ti-C-O fibre using an organometallic polymer precursor, J. Mater. Sci. 23 (1988) 2589-2594.

DOI: 10.1007/bf01111919

Google Scholar

[29] K. Kakimoto, T. Shimoo, K. Okamura, Oxidation-induced microstructural change of Si–Ti–C–O fibers, J. Am. Ceram. Soc. 81 (1998) 409-412.

DOI: 10.1111/j.1151-2916.1998.tb02348.x

Google Scholar