Simulation of the Extrusion Texture of Magnesium Alloy AZ31 Using Crystal Plasticity Finite Element Method

Article Preview

Abstract:

By using Eulerian adaptive modeling approach, both the round extrusion and sheet extrusion of magnesium alloy AZ31 were simulated. Furthermore, the history strains of material point flowing through the Eulerian domain was extracted and used as the foundation for defining the boundary conditions in the crystal plasticity finite element (CPFE) modeling for the extrusion texture. By virtue of this modeling method, the realistic grain boundaries can be approximated by using a 3D polycrystal generator and the intra-granular interactions can be well described. Both of the simulated round extrusion and sheet extrusion textures of alloy AZ31 show reasonable agreement with experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

538-544

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Gall, S. Műller, and W. Reimers: International Journal of Material Forming Vol. 6 (1) (2011), pp.187-197.

Google Scholar

[2] M. Shahzad, L. Wagner: Materials Science and Engineering: A Vol. 506 (1-2) (2009), pp.141-147.

Google Scholar

[3] L.W.F. Mackenzie, B. Davis, F.J. Humphreys and G.W. Lorimer: Material Science and Technology Vol. 23 (10) (2007), pp.1173-1180.

Google Scholar

[4] N. Stanford, D. Atwell, A. Beer, C. Davies and M. Barnett: Scripta Materialia Vol. 59 (7) (2008) pp.772-775.

DOI: 10.1016/j.scriptamat.2008.06.008

Google Scholar

[5] T. Mayama, M. Noda, R. Chiba and M. Kuroda: International Journal of Plasticity Vol. 27 (12) (2011), p.1916-(1935).

Google Scholar

[6] S. Biswas, S. Suwas, R. Sikand and A. K. Gupta: Materials Science and Engineering: A Vol. 528 (10-11) (2011), pp.3722-3729.

DOI: 10.1016/j.msea.2011.01.021

Google Scholar

[7] S. Agnew, P. Mehrotra, T. Lillo and G. Stoica: Acta Materialia Vol. 53 (11) (2005), pp.3135-3146.

DOI: 10.1016/j.actamat.2005.02.019

Google Scholar

[8] D. Peirce, R. Asaro and A. Needleman: Acta Metallurgica Vol. 31 (12) (1983), p.1951-(1976).

DOI: 10.1016/0001-6160(83)90014-7

Google Scholar

[9] J. V. D. Langkruis and J. Lof: Computational Materials Science Vol. 18 (3-4) (2000), pp.381-392.

Google Scholar

[10] R. Quey, P. Dawson and F. Barbe: Computer Methods in Applied Mechanics and Engineering Vol, 200 (2011) pp.1729-1745.

DOI: 10.1016/j.cma.2011.01.002

Google Scholar

[11] N. Stanford, and M. Barnett: Scripta Materialia Vol. 58 (2008), pp.179-182.

Google Scholar

[12] L.L. Chang, Y.N. Wang and X. Zhao. Materials Science and Engineering A Vol. 496 (2008) p.512–516.

Google Scholar