Elastic Properties and Electronic Structures of L12-TiAl3 and L12-Ti(Al,Pt)3: A Density Functional Theory Investigation

Article Preview

Abstract:

First-principles calculations have been carried out to investigate the elastic properties and electronic structures of L12-TiAl3 and L12-Ti (Al, Pt)3. The optimized structural parameters were largely consistent with the experimental values. The electronic density of states (DOS) and the differences of charge density distribution were given. The independent single-crystal elastic constants and polycrystalline elastic parameters such as bulk modulus B, Young’s modulus E, shear modulus G, Poisson’s ratio ν and anisotropy value A have been calculated by Voigt-Reuss-Hill averaging scheme. The results indicate that the L12-Ti (Al, Pt)3 exhibits larger anisotropy and more ductile than L12-TiAl3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

816-825

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Fergus, Review of the effect of alloy composition on the growth rates of scales formed during oxidation of gamma titanium aluminide alloys, Mater. Sci. Eng. A. 33(2002) 108-125.

DOI: 10.1016/s0921-5093(02)00064-3

Google Scholar

[2] F.H. Froes, C. Suryanarayana, D. Eliezer, Synthesis, properties and applications of titanium aluminides, J. Mater. Sci. 27(1992) 5113-5140.

DOI: 10.1007/bf02403806

Google Scholar

[3] A. Grytsiv, P. Rogl, H. Schmidt, G. Giester, P. Hundegger, G. Wiesinger, V. Pomjakusin, Formation and crystal chemistry of cubic ternary phases with filled Th6Mn23-type and AuCu3-type in the systems Ti-MVIII-Al, Intermetallicsl. 12(2004) 563-577.

DOI: 10.1016/j.intermet.2004.02.002

Google Scholar

[4] M. Asta, D.D. Fontaine, M.V. Schilfgaarde, First-principles study of phase stability of Ti-Al intermetallic compounds, J. Mater. Resl. 8(1993) 2554-2568.

DOI: 10.1557/jmr.1993.2554

Google Scholar

[5] J. Zou, C.L. Fu, M.H. Yoo, Phase stability of intermetallics in the Al-Ti system: A first-principles total-energy investigation, Intermetallics. 3(1995) 265-269.

DOI: 10.1016/0966-9795(95)97286-a

Google Scholar

[6] C. Brande, O.T. Inal, Mechanical properties of Cr, Mn, Fe, Co, and Ni modified titanium trialuminides, J. Mater. Sci. 37(2002) 4399-4403.

Google Scholar

[7] J.J. Ding, P. Rogl, B. Chevalier, J. Etourneau, Structural chemistry and phase relations in intermetallic systems Ti-{Pd, Pt}-Al, Intermetallics. 8(2000) 1377-1384.

DOI: 10.1016/s0966-9795(00)00067-4

Google Scholar

[8] S. Chaudhuri, J.T. Muckerman, First-principles study of Ti-catalyzed hydrogen chemisorption on an Al surface: a critical first step for reversible hydrogen storage in NaAlH4, J. Phys. Chem. B. 109(2005) 6952-6957.

DOI: 10.1021/jp050558z

Google Scholar

[9] H.B. Zhou, Y. Zhang, Y.L. Liu, M. Kohyama, P.G. Yin, G.H. Lu, First-principles characterization of the anisotropy of theoretical strength and the stress-strain relation for a TiAl intermetallic compound, J. Phys.: Condens. Matter . 21(2009).

DOI: 10.1088/0953-8984/21/17/175407

Google Scholar

[10] C.L. Chen, W. Lu, L.L. He, H.Q. Ye, First-principles study of deformation-induced phase transformations in Ti-Al intermetallics, J. Mater. Res. 24(2009) 1662-1666.

DOI: 10.1557/jmr.2009.0211

Google Scholar

[11] A.E. Carlsson, P.J. Meschter, Relative stabilities of L12 and DO22 structures in ternary MAl3-base aluminides, J. Mater. Res. 5(1990) 2813-2818.

DOI: 10.1557/jmr.1990.2813

Google Scholar

[12] C. Colinet, A. Pasturel, Ab initio calculation of the formation energies of L12, D022, D023 and one dimensional long period structures in TiAl3 compound, Intermetallics, 10(2002) 751-764.

DOI: 10.1016/s0966-9795(02)00054-7

Google Scholar

[13] G. Ghosh, A.V. D. Walle, M. Asta, First-principles phase stability calculations of pseudobinary alloys of (Al, Zn)3Ti with L12, D022, and D023 structures, J. Phase Equilib. Diff. 28(2007) 9-22.

DOI: 10.1007/s11669-006-9007-4

Google Scholar

[14] Z.L. Chen, H.M. Zou, F.M. Yu, J. Zou, Chemical bonding and pseudogap formation in D022- and L12-structure (V, Ti)Al3, J. Phys. Chem. Solids. 71(2010) 946-951.

DOI: 10.1016/j.jpcs.2010.04.012

Google Scholar

[15] M.D. Segall, P.J. D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens Matter. 14(2002) 2717-2744.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[16] D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45(1980) 566-569.

DOI: 10.1103/physrevlett.45.566

Google Scholar

[17] J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B. 23(1981) 5048-5079.

DOI: 10.1103/physrevb.23.5048

Google Scholar

[18] J. Braun, M. Ellner, B. Predel, Splmat-Cooling-Untersuchungen im Binären System Ti-Al, Z. Metallkd. 85(1994) 855-862.

DOI: 10.1515/ijmr-1994-851210

Google Scholar

[19] F.D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA. 30(1944) 244-247.

DOI: 10.1073/pnas.30.9.244

Google Scholar

[20] M. Mattesini, R. Ahuja, B. Johansson, Cubic Hf3N4 and Zr3N4: A class of hard materials, Phys. Rev. B. 68(2003) 184108.

Google Scholar

[21] D.C. Wallace, Thermodynamics of Crystals, Wiley, New York, (1972).

Google Scholar

[22] W. Voigt, Lehrbuch der Kristallphysik, Taubner, Leipzig, (1928).

Google Scholar

[23] A. Reuss, Calculation of the flow limits of mixed crystals on the basis of the plasticity of mono-crystals, Z. Angew Math. Mech. 9(1929) 49-58.

Google Scholar

[24] R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A. 65(1952) 349-354.

DOI: 10.1088/0370-1298/65/5/307

Google Scholar

[25] J. Li, M. Zhang, Theoretical investigations on phase stability, elastic constants and electronic structures of D022- and L12-Al3Ti under high pressure, J. Alloys Compd. 556(2013) 214-220.

DOI: 10.1016/j.jallcom.2012.12.135

Google Scholar

[26] T. Tian, X.F. Wang, W. Li, Ab initio calculations on elastic properties in L12 structure Al3X and X3Al-type (X=transition or main group metal) intermetallic compounds, Solid State Commun. 156(2013) 69-75.

DOI: 10.1016/j.ssc.2012.10.021

Google Scholar

[27] R.H. Baughman, J.M. Shacklette, A.A. Zakhidov, Negative Poisson's ratios as a common feature of cubic metals, Nature. 392(1998) 362-365.

DOI: 10.1038/32842

Google Scholar

[28] S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45(1954) 823-843.

DOI: 10.1080/14786440808520496

Google Scholar

[29] J.J. Lewandowski, W.H. Wang, A.L. Greer, Intrinsic plasticity or brittleness of metallic glasses, Philos. Mag. Lett. 85(2005) 77-87.

DOI: 10.1080/09500830500080474

Google Scholar

[30] A.G. Every, General closed-form expressions for acoustic waves in elastically anisotropic solids, Phys. Rev. B. 22(1980) 1746.

DOI: 10.1103/physrevb.22.1746

Google Scholar

[31] S.I. Ranganathan, M. Ostoja-starzewski, Universal elastic anisotropy index, Phys. Rev. Lett. 101(2008) 055504.

DOI: 10.1103/physrevlett.101.055504

Google Scholar

[32] Z.A. D. Lethbridge, R.I. Walton, A.S. H. Marmier, C.W. Smith, K.E. Evans, Elastic anisotropy and extreme Poisson's ratios in single crystals, Acta Mater. 58(2010) 6444-6451.

DOI: 10.1016/j.actamat.2010.08.006

Google Scholar

[33] H. Ozisik, E. Deligoz, K. Colakoglu, G. Surucu, Structural and mechanical stability of rare-earth diborides, Chin. Phys. B. 22(2013) 046202-8.

DOI: 10.1088/1674-1056/22/4/046202

Google Scholar

[34] X.Q. Chen, H.Y. Niu, D.Z. Li, Y.Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics. 19(2011) 1275-1281.

DOI: 10.1016/j.intermet.2011.03.026

Google Scholar

[35] K.B. Panda, S.R. Chandran, First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory, Acta Mater. 54(2006) 1641-1657.

DOI: 10.1016/j.actamat.2005.12.003

Google Scholar

[36] J.F. Nye, Physical Properties of Crystals, Oxford University Press, Oxford, (1985).

Google Scholar

[37] W.C. Hu, Y. Liu, D.J. Lu, X.Q. Zeng, C.S. Xu, First-principles study of structural and electronic properties of C14-type Laves phase Al2Zr and Al2Hf, Comput. Mater. Sci. 83(2014) 27-34.

DOI: 10.1016/j.commatsci.2013.10.029

Google Scholar

[38] K. Brugger, Pure modes for elastic waves in crystals, J. Appl. Phys. 36(1965) 759-768.

Google Scholar

[39] J. Feng, B. Xiao, C.L. Wan, Z.X. Qu, Z.C. Huang, J.C. Chen, R. Zhou, W. Pan, Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7(Ln= La, Pr, Nd, Sm, Eu and Gd) pyrochlore, Acta Mater. 59(2011) 1742-1760.

DOI: 10.1016/j.actamat.2010.11.041

Google Scholar

[40] J. Wong, M. Krisch, D.L. Farber, F. Occelli, R. Xu, T.C. Chiang, D. Clatterbuck, A.J. Schwartz, M. Wall, C. Boro, Crystal dynamics of δ fcc Pu-Ga alloy by high-resolution inelastic x-ray scattering, Phys. Rev. B. 72(2005) 064115.

DOI: 10.1103/physrevb.72.064115

Google Scholar

[41] D. Music, A. Houben, R. Dronskowshi, J.M. Schneider, Ab initio study of ductility in M2AlC (M= Ti, V, Cr), Phys. Rev. B. 75(2007) 174102.

Google Scholar

[42] J. Feng, B. Xiao, R. ZHou, W. Pan, D.R. Clarke, Anisotropic elastic and thermal properties of the double perovskite slab–rock salt layer Ln2SrAl2O7 (Ln= La, Nd, Sm, Eu, Gd or Dy) natural superlattice structure, Acta Mater. 60(2012) 3380-3392.

DOI: 10.1016/j.actamat.2012.03.004

Google Scholar