[1]
Zhou Deguang, Creative Use of Bearing Steels J, ASTMSTP 1195(1993) 284-292.
Google Scholar
[2]
T. Okane, T. Suzuki, T. Umeda, Numerical Simulation of VAR Process for Titanium Alloy, Proceeding of Modeling of Casting and Solidification Processes. 39(1991) 21-23.
Google Scholar
[3]
Zhao Xiaohua, Numerical simulation of temperature field of titanium alloy vacuum consumable arc melting process, J, Special Casting and Nonferrous Alloys, 11 (2010) 1001-1004.
Google Scholar
[4]
Gao Fan, Numerical Simulation of Vacuum Remelting Process for Ti-Al Alloy, J, Special Casting And Nonferrous Alloys. 07(2011) 608-611.
Google Scholar
[5]
Atwood R C, Lee P D, Simulation of the three-dimensional morphology of solidification morphology of solidification porosity in an aluminum-silicon alloy. J, Acta Materialia, 52(2003) 5447-5466.
DOI: 10.1016/s1359-6454(03)00411-7
Google Scholar
[6]
Lee P D, Hunt J D, Hydrogen porosity in directionally solidified aluminum-copper alloys: a mathematical model. J, Acta Materialia, 49(2001) 1383-1398.
DOI: 10.1016/s1359-6454(01)00043-x
Google Scholar
[7]
Lee P D, Chirazi A, Atwood RC, Multi-scale modeling of solidification microstructures, including micro-segregation and micro-porosity, in an Al-Si-Cu alloy. J, Materials Science and Engineering, 365A (2004) 57-65.
DOI: 10.1016/j.msea.2003.09.007
Google Scholar
[8]
Wang W, Lee P D, Mclean M, A model of solidification microstructures in nickel-based super-alloys: predicting primary dendrite spacing selection J, Acta Materialia, 51(2003) 2971-2987.
DOI: 10.1016/s1359-6454(03)00110-1
Google Scholar
[9]
Bellot J, Ablitzer D, Foster B, Dissolution of hard-alpha inclusions in liquid titanium alloys J, Metallurgical and Materials Transaction B, 28(1997) 1001-1010.
DOI: 10.1007/s11663-997-0054-y
Google Scholar
[10]
Zhang Yingjuan, Kou Hongchao, Li Pengfei, Simulation on solidification structure and shrinkage porosity in TC4 ingot during vacuum arc remelting process, Special Casting and Nonferrous Alloys, 32(2012) 418-421.
Google Scholar
[12]
Boettinger W J, Coriell S R, Greer A L, Solidification microstructure: recent developments, future direction. Acta Mater, 14(2000) 43-48.
DOI: 10.1016/s1359-6454(99)00287-6
Google Scholar
[13]
Oldfie1d W. A quantitative approach to casting so1idification, Freezing of casting iron. ASM Trans, 59(1966) 945-947.
Google Scholar
[14]
Gandin Ch-A, Rappaz M, A coupled finite element-cellular automaton model for prediction of dendritic grain structures in solidification process, Acta Metal Mater, 42(1994) 2220-2233.
DOI: 10.1016/0956-7151(94)90302-6
Google Scholar
[15]
Zanner. F. J, Vacuum Consumable Arc Melting Electrode Gap Control Strategies Based on Drop Short Properties, Met, Trans, 12(1981) 721-728.
DOI: 10.1007/bf02654141
Google Scholar
[16]
Mir H E, Jardy A, Bellot J P, Thermal behavior of the consumable electrode in the vacuum arc remelting process, J, Journal of Materials Processing Technology, 210(2010) 564-571.
DOI: 10.1016/j.jmatprotec.2009.11.008
Google Scholar
[17]
K.O. Yu: in Proc, AVS Vacuum Metallurgy Conf, G.K. Bhat and M. Lherbier, American Vacuum Society, New York, NY, 47(1986) 83-92.
Google Scholar
[18]
RAPPAZ M, GANDIN CH. –A, Probabilistic modeling of microstructure formation in solidification process, J, Acta Metanugicaet Material, 41(1993) 345-360.
DOI: 10.1016/0956-7151(93)90065-z
Google Scholar
[19]
KURZ W, GIOVANOLA B. TRIVEDI R, Theory of micro-structural development during rapid solidification, J, Acta Materialia, 34(1986) 823-830.
DOI: 10.1016/0001-6160(86)90056-8
Google Scholar
[20]
ATWOOD R C, LEE P D, Multi-scale modeling of microstructure formation during vacuum arc remelting of titanium, J, Journal of Materials Science, 39(2004) 193-197.
Google Scholar
[21]
JARDY A.FALK L, ABLITZER D, The energy exchange during vacuum arc remelting, J, Iron Making and Steel Making, 19(1992) 226-232.
Google Scholar
[22]
ANDREEV A L, ANOSHKIN N F, BOCHVAR G A, Melting and casting of titanium alloys M, Moscow: Metallurgy, 56(1994) 96-98.
Google Scholar
[23]
REITER G, MARONNIER V, SOMMITSCH C, Numerical Simulation of the VAR Process with Calcosoft-2D and its Validation, Proceedings of Liquid Metals Processing and Casting Symposium, 44(2003) 77-86.
Google Scholar