Significant Influences of Co-Doping Ag and Sb on Electrical Properties and Thermoelectric Applications of AgPbmSbTem+2 Compounds Synthesized Using Solid State Microwave Technique

Article Preview

Abstract:

In this paper we reported the electrical conductivity and thermoelectric characterization of silver (Ag) and antimony (Sb) co-doped lead telluride bulk materials, which have been synthesized using solid state microwave technique. The doping level has performed first-principle calculations for the AgPbmSbTem+2 (LAST-m) (m = 0, 2, 4, 6, 8 and 10) to clarify the effect of simultaneous doping of Ag and Sb on PbTe. The Hall effect and thermoelectric measurements have shown n-type conductivity in AgPbmSbTem+2 samples. The samples show large and negative values of the Seebeck coefficient and moderate electrical conductivity. The Seebeck coefficient increased with doping levels increases at m=0 to 10. The value of the Seebeck coefficient is −419.69 μVK−1 for AgPb8SbTe10 at 338 K. It has been found that AgPb8SbTe10 sample has a higher thermoelectric power factor 1.87 mW K-2 m-1 at 310 K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-197

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Bergum, T. Ikeda, G. Jeffrey Snyder, J. Sol. St. Chemi. 184 (2011) 2543–2552.

Google Scholar

[2] A. Hmood, A. Kadhim, H. Abu Hassan, J. Alloys Compd. 520 (2012) 1– 6.

Google Scholar

[3] A. Hmood, A. Kadhim, H. Abu Hassan, Superlattice Microstruct. 51 (2012) 825–833.

Google Scholar

[5] A. Kadhim, A. Hmood, H. Abu Hassan, Mater. Sci. Semi. Pro. 15 (2012) 549–554.

Google Scholar

[6] A. Hmood, A. Kadhim, H. Abu Hassan, Superlattice Microstruct. 53 (2013) 39–48.

Google Scholar

[7] Y. Pei, A. D. La Londe, S. Iwanaga, G. J. Snyder, Energy Environ. Sci. 4 (2011) 2085−(2089).

Google Scholar

[8] A. Kosuga, M. Uno, K. Kurosaki, S. Yamanaka, J. Alloys Compd. 387 (2005) 52–55.

Google Scholar

[9] W. Q. Ao ,W. A. Sun, J. Q. Li, F. S. Liu, Y. Dub, J. Alloys Compd. 475 (2009) L22–L24.

Google Scholar

[10] B. Du, H. Li, J. Xu, X. Tang, C. Uher, J. Sol. St. Chem. 184 (2011) 109–114.

Google Scholar

[11] K. F. Cai, X. R. He, M. Avdeev, D. H. Yu, J. L. Cui, H. Li, J. Sol. St. Chem. 181 (2008) 1434– 1438.

Google Scholar

[12] K. F. Cai, C. Yan, Z. M. He, J. L. Cui, C. Stiewe, E. Muller, H. Li, J. Alloys Compd. 469 (2009) 499–503.

Google Scholar

[13] S. Perlt, Th. Hoche, J. Dadda, E. Muller, P. Bauer Pereira, R. Hermann, M. Sarahan, E. Pippel, R. Brydson, J. Sol. St. Chem. 193 (2012) 58–63.

DOI: 10.1063/1.4731524

Google Scholar

[14] H. S. Dow, M. W. Oh, B. S. Kim, S. D. Park, B. K. Min, H. W. Lee, D. M. Wee, J. Appl. Phys. 108 (2010) 113709.

Google Scholar

[15] H. S. Dow, M. W. Oh, S. D. Park, B. S. Kim, B. K. Min, H. W. Lee, D. M. Wee, J. Appl. Phys. 105, (2009) 113703.

Google Scholar