Thermal Annealing Effect on Properties of Zn Foils Substrates

Article Preview

Abstract:

Annealing of Zn foils substrates was performed in air for 30 min at 300 oC, 400 oC and 500 oC, respectively. The effects of annealing on the structural and optical properties of Zn foils substrates were investigated using X-ray diffraction (XRD), and photoluminescence (PL) measurements. After annealing, the XRD patterns showed that the annealed ZnO films have c-axis preferential orientation, the crystallinity of the ZnO films was improved, and the grain size decreased by thermal annealing. PL spectra are clearly visible at 376 nm for ZnO film grown on Zn foils substrates. The mean grain size in the annealed ZnO microstructures was estimated using Scherrer’s equation is about 82, 76, 69 nm for 300°C, 400°C, and 500°C, respectively. A PL spectrum is clearly visible at 376 nm for ZnO microstructures grown on Zn foil substrates. The PL analysis indicates that the growth of ZnO thin film with the presence of the defect-related band. Green-yellow band emission is observed at 520 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-219

Citation:

Online since:

June 2015

Authors:

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Kwak, K. Yong, J. Phys. Chem. C 112, 3036 (2008).

Google Scholar

[2] T.F. Long, S. Yin, K. Takabatake, P.L. Zhang, Nanoscale Res. Lett. 4, 247 (2009).

Google Scholar

[3] H. Wang, Z.P. Zhang, X.N. Wang, Q. Mo, Y. Wang, J.H. Zhu, H.B. Wang, F.J. Yang, Y. Jiang, Nanoscale Res. Lett. 3, 309 (2008).

Google Scholar

[4] A. Umar, S.H. Kim, E.K. Suh, Y.B. Hahn, Chem. Phys. Lett. 440, 110 (2007).

Google Scholar

[5] J. Zhang, S.R. Wang, M.J. Xu, Y. Wang, B.L. Zhu, S.M. Zhang, W.P. Huang, S.H. Wu, Cryst. Growth Des. 8, 265 (2008).

Google Scholar

[6] H.Y. Dang, J. Wang, S.S. Fan, Nanotechnology 14, 738 (2003).

Google Scholar

[7] T.W. Kim, T. Kawazoe, S. Yamazaki, M. Ohtsu, T. Sekiguchi, Appl. Phys. Lett. 84, 3358 (2004).

Google Scholar

[8] F.L. Deepak, P. Saldanha, S.R.C. Vivekchand, A. Govindaraj, Chem. Phys. Lett. 417, 535 (2006).

Google Scholar

[9] D. Li, Y.H. Leung, A.B. Djurisic, Z.T. Liu, M.H. Xie, S.L. Shi.

Google Scholar

[10] S.J. Xu, W.K. Chan, Appl. Phys. Lett. 85, 1601 (2004).

Google Scholar

[11] L. Wischmeier, T. Voss, I. Rueckmann, J. Gutowski, Nanotechnology 19, 135705 (2008).

Google Scholar

[12] B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79 (2001) 943.

Google Scholar

[13] J. Jie, A. Morita, H. Shirai, J. Appl. Phys. 108, 033521 (2010).

Google Scholar

[14] R. Baca, G. Juarez, H. Solache, J. Andraca, J. Martinez, A. Esparza, T. Kryshtab, R. Pena, Materials Science and Engineering 8 (2010) 012041.

DOI: 10.1088/1757-899x/8/1/012041

Google Scholar

[15] L.S. Chuah, Z Hassan, S.S. Tneh, K. G. Saw, S. S. Ng, F. K. Yam, F. Azhari, The effects of thermal treatments on microstructure phosphorus-doped ZnO layers grown by thermal evaporation, Composite Interfaces, 17, 863-872 (2010).

DOI: 10.1163/092764410x539244

Google Scholar

[16] L.S. Chuah, Z. Hassan, S.S. Tneh, H. Abu Hassan, Porous silicon as an intermediate buffer layer for zinc oxide nanorods, Composite Interfaces, 17, 733-742 (2010).

DOI: 10.1163/092764410x495333

Google Scholar

[17] L.S. Chuah, Z. Hassan, S.S. Tneh, Thermal annealing effect on properties of Zn thin films deposited on Si(111) substrates by dc sputtering, Optoelectronics and Advanced Materials-Rapid Communications (OAM-RC), Vol. 4, No. 4, 502-504 (2010).

Google Scholar

[18] L. Dai, X. L. Chen, W. J. Wang, T. Zhou, B.Q. Hu, J. Phys. Condens, Matter 15 (2003) 2221-2226.

Google Scholar

[19] D. H. Kong, W. C. Choi, Y. C. Shin, J. H. Park and T. G. Kim, J. Korean Phys. Soc. 48, 1214 (2006).

Google Scholar

[20] X. Q. Wei, Z. G. Zhang, M. Liu, C. S. Chen, G. Sun, C. S. Xue, H. Z. Zhuang and B. Y. Man, Mater. Chem. Phys. 101, 285 (2007).

Google Scholar