[1]
M. S Idris, Syntesis and Characterisation of Lithium Nickel Manganese Cobalt Oxide as Cathode Materials, PhD Thesis, Dept of Materials Science and Engineering, The University of Sheffield, UK (2011), pp.1-2.
Google Scholar
[2]
J.M. Tarascon and M. Armand, Issue and Challenges Facing Rechargeable Lithium Batteries, Nature, 414, (2001), p.359 – 367.
DOI: 10.1038/35104644
Google Scholar
[3]
J. B. Goodenough and Y. S. Kim, Challenges for Rechargeable Li Batteries, Chemistry of Materials, 22, (2010), p.587 – 603.
Google Scholar
[4]
M. S. Whittingham, Lithium Batteries and Cathode Materials, Chemical Reviews, 104, (2004), p.4271 – 4301.
Google Scholar
[5]
W.S. Yoon, M. Balasubramanian, K.Y. Chung, X.Q. Yang, J. McBreen, C.P. Grey, and D.A. Fischer, Investigation of the Charge Compensation Mechanism on the Electrochemically Li-Ion Deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 Electrode System by Combination of Soft and Hard X-ray Absorption Spectroscopy, Journal of American Chemical Society, 127, (2005).
DOI: 10.1002/chin.200613019
Google Scholar
[6]
Bruker AXS, TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data. – User manual, Bruker AXS, Karlsuhe, Germany.
Google Scholar
[7]
K. Momma and F. Izumi, VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data, Journal of Applied Crystallography, 44, (2011), pp.1272-1276.
DOI: 10.1107/s0021889811038970
Google Scholar
[8]
K. Momma and F. Izumi, VESTA: A Three-Dimensional Visualization System for Electronic and Structural Analysis, Journal of Applied Crystallography, 41, (2008), pp.653-658.
DOI: 10.1107/s0021889808012016
Google Scholar
[9]
T. Ohzuku and Y. Makimura, Leyered lithium Insertion Material for LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries, Chemistry Letters, 30, (2001), p.642 – 643.
DOI: 10.1149/ma2005-02/4/107
Google Scholar
[10]
P.S. Whitfield, I.J. Davidson, L.M.D. Cranswick, I.P. Swainson, P.W. Stephens, Investigation of Possible Superstructure and Cation Disorder in the Lithium Battery Cathode Material LiMn1/3Ni1/3Co1/3O2 using Neutron and Anomalous Dispersion Powder Diffraction, Solid State Ionics, 176, (2005).
DOI: 10.1016/j.ssi.2004.07.066
Google Scholar
[11]
D. Zeng, J. Cabana, J. Bréger, W.S. Yoon, and C.P. Grey, Cation Ordering in Li[NixMnxCo(1–2x)]O2-Layered Cathode Materials: A Nuclear Magnetic Resonance (NMR), Pair Distribution Function, X-ray Absorption Spectroscopy, and Electrochemical Study, Chemistry of Materials, 19, (2007).
DOI: 10.1021/cm702241a
Google Scholar
[12]
N. Yabuuchi, Y. Makimura and T. Ohzuku, Solid State Chemistry and Electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for Advanced Lithium-Ion Batteries, Journal of Electrochemical Society, 154, (2007), pp. A314 – A321.
DOI: 10.1149/ma2005-02/4/107
Google Scholar
[13]
M. S. Idris and A. R West, The Effect on Cathode Performance of Oxygen Non-Stoichiometry and Interlayer Mixing in Layered Rock Salt LiNi0. 8Mn0. 1Co0. 1O2-δ, Journal of The Electrochemical Society, 159, (2012), pp. A396 – A401.
DOI: 10.1149/2.037204jes
Google Scholar
[14]
R.D. Shannon, Revised Effective Iionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallographica, 32, (1976), p.751 – 767.
DOI: 10.1107/s0567739476001551
Google Scholar