Estimation of Material Damping Coefficients of AlN for Film Bulk Acoustic Wave Resonator

Article Preview

Abstract:

AlN has been widely used as the piezoelectric thin film layer in film bulk acoustic wave resonator (FBAR). The performance of FBAR is influenced by various geometrical parameters and losses from piezoelectric material such as thermoelastic damping and material damping. This research focuses on the estimation of material damping coefficients (α and β) of the AlN by using the Akhieser approximation to estimate more accurate values of the coefficients, thus a more realistic value of the quality (Q) factor is achieved for FBAR operating at Ku-band frequency ranges (12 GHz-18 GHz).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

209-214

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Yokoyama, M. Hara, M. Ueda, and Y. Satoh, K-Band Ladder Filters Employing Air-Gap Type Thin Film Bulk Acoustic Resonators, IEEE Ultrasonics Symposium, pp.598-601 (2008).

DOI: 10.1109/ultsym.2008.0143

Google Scholar

[2] Q. Chen and Q. -M. Wang, The Effective Electromechanical Coupling Coefficient of Piezoelectric Thin-Film Resonators, Applied Physics Letters, vol. 86, pp.022904-3, (2005).

DOI: 10.1063/1.1850615

Google Scholar

[3] G. F. Perez-Sanchez and A. Morales-Acevedo, Design of Bulk Acoustic Wave Resonators Based on ZnO for Filter Applications, 6th International Conference on Electrical Engineering, Computing Science and Automatic Control, (2009), pp.1-6.

DOI: 10.1109/iceee.2009.5393445

Google Scholar

[4] D. M. Pozar, Microwave Network Analysis, Microwave Engineering, 2nd ed New York: John Wiley & Sons, (1988), pp.206-237.

Google Scholar

[5] T. Pensala, Thin Film Bulk Acoustic Wave Devices, PhD, School of Science, Aalto University, Finland, (2011).

Google Scholar

[6] G. G. Fattinger, BAW Resonator Design Considerations - an Overview, Frequency Control Symposium, 2008 IEEE International, (2008), pp.762-767.

DOI: 10.1109/freq.2008.4623102

Google Scholar

[7] J. D. Larson, III, P. D. Bradley, S. Wartenberg, and R. C. Ruby, Modified Butterworth-Van Dyke Circuit for Fbar Resonators and Automated Measurement System, IEEE Ultrasonics Symposium, (2000), pp.863-868.

DOI: 10.1109/ultsym.2000.922679

Google Scholar

[8] F. D. Bannon, J. R. Clark, and C. T. C. Nguyen, High-Q Hf Microelectromechanical Filters, IEEE Journal of Solid-State Circuits vol. 35, pp.512-526, (2000).

DOI: 10.1109/4.839911

Google Scholar

[9] J. V. Tirado, Bulk Acoustic Wave Resonators and Their Application to Microwave Devices, PhD, Universitat Antonoma de Barcelona, (2010).

Google Scholar

[10] D. S. Shim and D. A. Feld, A General Nonlinear Mason Model and Its Application to Piezoelectric Resonators, International Journal of RF and Microwave Computer-Aided Engineering, vol. 21, pp.486-495, (2011).

DOI: 10.1002/mmce.20553

Google Scholar

[11] C. Min-Chiang, H. Zi-Neng, P. Shih-Yung, Z. Wang, and C. S. Lam, Modified BVD-Equivalent Circuit of FBAR by Taking Electrodes into Account, Proceedings IEEE Symposium on Ultrasonics (2002), pp.973-976.

DOI: 10.1109/ultsym.2002.1193558

Google Scholar

[12] H. Jin, S. R. Dong, J. K. Luo, and W. I. Milne, Generalised Butterworth-Van Dyke Equivalent Circuit for Thin-Film Bulk Acoustic Resonator, Electronics Letters, vol. 47, pp.424-426, (2011).

DOI: 10.1049/el.2011.0343

Google Scholar

[13] C. Chi-Jung and M. Z. Atashbar, Finite Element Simulation of SMFBAR Based Sensor, IEEE International Conference on Electro/Information Technology, (2009), pp.190-195.

DOI: 10.1109/eit.2009.5189609

Google Scholar

[14] S. Giraud, S. Bila, M. Aubourg, and D. Cros, Bulk Acoustic Wave Resonators 3D Simulation, International Symposium on Signals, Systems and Electronics, (2007), pp.327-330.

DOI: 10.1109/issse.2007.4294479

Google Scholar

[15] H. Campanella, Acoustic Wave and Electromechanical Resonators: Artech House (2010).

Google Scholar

[16] S. Adhikari, Damping Models for Structural Vibration, PhD, Engineering Department, University of Cambridge, (2000).

Google Scholar

[17] I. Chowdhury, Dasgupta, S. P, Compuation of Rayleigh Damping Coefficients for Large Systems, Electronic Journal of Geotechnical Engineering, vol. 8 C, (2003).

Google Scholar

[18] FBAR Design Tutorial, CoventorWare(R)2010, MEMS Design and Analysis Tutorials, Vol. 2.

Google Scholar

[19] M. T. Wauk, Attenuation in Microwave Acoustic Transducer and Resonators, PhD, Applied Physics, Standford University, London, (1969).

Google Scholar

[20] A. A. Shirakawa, J. M. Pham, P. Jarry, and E. Kerherve, Bulk Acoustic Wave Coupled Resonator Filters Synthesis Methodology, European Microwave Conference, (2005), p.4.

DOI: 10.1109/eumc.2005.1608915

Google Scholar

[21] A. Ruimi, Y. Liang, and R. M. McMeeking, Effect of Geometry on the Performance of Mems Aluminum Nitride Trampoline Resonators in Longitudinal Resonance, Journal of the Franklin Institute, (2011).

DOI: 10.1016/j.jfranklin.2011.09.005

Google Scholar

[22] N. I. M. Nor, K. Shah, J. Singh, and Z. Sauli, Design and Analysis of Wideband Ladder-Type Film Bulk Acoustic Wave Resonator Filters in Ku-Band, Active and Passive Electronic Components, vol. 2013, (2013).

DOI: 10.1155/2013/403516

Google Scholar