The Development of Macroporous PEG-Based Hydrogel Scaffolds for Tissue Engineering Applications

Article Preview

Abstract:

The fabrication of porous poly (ethylene glycol) (PEG)-based hydrogel scaffolds via epoxy-amine crosslinked polymerization was conducted in this research works. PEG was chosen as the main component of the hydrogel scaffolds due to their unique characteristic including high hydrophilicity, biocompatibility and low toxicity properties. The effects of different solvents ((water, dimethylsulfoxide (DMSO), triethylene glycol dimethyl ether (TGDME), etc) toward physical and mechanical properties of fabricated PEG-based hydrogel scaffolds were investigated to identify the suitable solvent for fabrication of porous hydrogel scaffolds. From the results obtained, DMSO was selected as the solvent because the produced hydrogels scaffolds possessed the optimum physical properties as compared to other solvents. In tissue engineering field, porosity of scaffolds play key role for cell attachment, grow and proliferation consequently help in regeneration of new tissues. Therefore, in this study the macroporous hydrogel scaffolds were produced via introduction of fused salt templates in the range sizes of 100–300 μm (small) and 300–600 μm (large) in the fabrication process. Improved interconnectivity of pores was achieved and pores sizes obtained were according to the size of salt particles utilized in the template. Modification of the scaffolds pore morphology resulted in a reduction in the mechanical properties as we expected.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

361-366

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Vats, A.; Tolley, N. S.; Polak, J. M.; Gough, J. E. Clinical of Otolaryngol 2003, 28, 165-172.

Google Scholar

[2] Hutcmacher, D. W. Biomaterials 2000, 21, 2529-2543.

Google Scholar

[3] Suh, J. –K. F.; Matthew, H. W. Biomaterials 2000, 21, 2589-2598.

Google Scholar

[4] Liao, E.; Yaszemski, M.; Krebsbach, P.; Hollister, S. Tissue Eng., 2007, 13 (3) 537-550.

Google Scholar

[5] Wang, Y.; Kim, U. –J.; Blasioli, D. J.; Kim, H. –J.; Kaplan, D. L. Biomaterials 2005, 26, 7082-7094.

Google Scholar

[6] Pattison, M.; Webster, T. J.; Leslie, J.; Kaefer, M.; Haberstroh, K. M. Macromol. Biosci., 2007, 7, 690-700.

DOI: 10.1002/mabi.200600297

Google Scholar

[7] Seal, B. L.; Otero, T. C.; Panitch, A. Mater. Sci. Eng., R 2001, 34, 147-230.

Google Scholar

[8] Lee, K. Y.; Mooney, D. J. Chemical Reviews 2001, 101 (7), 1869-1879.

Google Scholar

[9] Drury, J. L.; Mooney, D. J. Biomaterials 2003, 24, 4337-4351.

Google Scholar

[10] Buckley, C. T.; O'Kelly, K. U., Topics in Bio-Mechanical Engineering. Trinity Centre for Bio-Engineering 2004; pp.147-166.

Google Scholar

[11] Roger Narayan, Biomedical Materials, 2009, Springer Science+Business Media LLC, p.30.

Google Scholar

[12] Ishaug-Riley, S. L.; Crane-Kruger, G. M.; Yaszemski, M. J.; Mikos, A. G. Biomaterials 1998, 19, 1405-1412.

DOI: 10.1016/s0142-9612(98)00021-0

Google Scholar

[13] Mikos, A. G.; Sarakinos, G.; Lyman, M. D.; Ingber, D. E.; Vacanti, J. P.; Langer, R. Biotechnol. Bioeng., 1993, 42, 716-723.

DOI: 10.1002/bit.260420606

Google Scholar

[14] O'Brien, F. J.; Harley, B. A.; Yannas, I. V.; Gibson, L. Biomaterials 2004, 25, 1077-1086.

Google Scholar

[15] Boyan, B. D.; Hummert, T. W.; Dean, D. D.; Scwartz, Z. Biomaterials 1996, 17, 137-146.

Google Scholar

[16] O'Brien, F. J.; Harley, B. A.; Yannas, I. V.; Gibson, L. J. Biomaterials 2005, 26, 433-441.

Google Scholar

[17] Chang, B. S.; Lee, C. –K.; Hong, K. –S.; Youn, H. –J.; Chung, S. –S.; Park, K. –W. Biomaterials 2000, 21, 1291-1298.

Google Scholar

[18] Ranucci, C. S.; Kumar, A.; Batra, S. P.; Moghe, P. V. Biomaterials 2000, 21, 783-793.

Google Scholar

[19] Brauker, J. H.; Carr-Brendel, W. E.; Martinson, L. A.; Crudele, J.; Johnston, W. D.; Johnson, R. C. J. Biomed. Mater. Res., 1995, 1517-1524.

DOI: 10.1002/jbm.820291208

Google Scholar

[20] Wake, M. C.; Patrick, C. W.; Mikos A. G. Cell Transplantation 1994, 3 (4), 586-597.

Google Scholar

[21] Kumerta, M.; Heimburg, D. V.; Schoof, H.; Heschel, I.; Rau, G. Int. J. Artif. Organs 2002, 25 (1), 67-73.

DOI: 10.1177/039139880202500111

Google Scholar