[1]
N. Li, Y. Zheng, Novel magnesium alloys developed for biomedical application: A review, Journal Materials Science Technology 29(6) (2013)489-502.
DOI: 10.1016/j.jmst.2013.02.005
Google Scholar
[2]
M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials 27(2006) 1728-1734.
DOI: 10.1016/j.biomaterials.2005.10.003
Google Scholar
[3]
X. N. Gu, Y. F. Zheng, S. P. Zhong, T. F. Xi, J. Q. Wang, and W. H. Wang, Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses, Biomaterials, 31(2010)1093-1103.
DOI: 10.1016/j.biomaterials.2009.11.015
Google Scholar
[4]
L. L. Hench, The story of Bioglass Journal of Materials Science: Materials Medicine 17(2006) 967-978.
Google Scholar
[5]
T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27(2006)2907-2915.
DOI: 10.1016/j.biomaterials.2006.01.017
Google Scholar
[6]
M. H. Fathi, A. Doostmohammadi, Bioactive glass nanopowder and bioglass coating for biocompability improvement of metallic implant. Journal of Materials Processing Technology, 209(2009)1385-1391.
DOI: 10.1016/j.jmatprotec.2008.03.051
Google Scholar
[7]
M. A. F. Zaludin, S. B. Jamaludin, M. S. Idris, N. A. Llah, Effect of 45S5 bio-glass particles on physical properties and corrosion resistance of the mg-5zn matrix composite, Open Journal of Metal, 4 (2014) 1-8.
DOI: 10.4236/ojmetal.2014.41001
Google Scholar
[8]
N. M. Shima Adzali, S. B. Jamaludin, M. N. Derman, Mechanical properties, corrosion behavior and bioactivity of composite metal alloys added with ceramic for biomedical applications, Review Advance Materials Science, 30 (2012) 262-266.
Google Scholar
[9]
M. Kheradmandfard, M. H. Fathi,M. Ahangarian, E. Mohammadi Zahrani, In vitro bioactivity evaluation of magnesium-substituted fluorapatite nanopowders. Ceramics International 38(2012)169-175.
DOI: 10.1016/j.ceramint.2011.05.157
Google Scholar
[10]
M. Razavi, M. H. Fathi, M. Meratian, Fabrication and characterization of magnesium-fluoroapatite nanocomposites for biomedical application. Materials Characterization 61(2010)1363-1370.
DOI: 10.1016/j.matchar.2010.09.008
Google Scholar
[11]
Y. K. Pan, C. Z. Chen, D. G. Wan, T. G. Zhao, Effect of phosphate on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg-Zn-Zr magnesium alloy, Colloids and Surface B: Biointerfaces 109(2013)1-9.
DOI: 10.1016/j.colsurfb.2013.03.026
Google Scholar
[12]
H. Tang, F. Wang, Synthesis and properties of CaTiO3-containing coating on AZ31 magneisum alloy by micro-arc oxidation. Materials Letters 93(2013)427-430.
DOI: 10.1016/j.matlet.2012.11.017
Google Scholar
[13]
S. A. Salman, K. Kuroda, M. Okido, Preparation and characterization of hydroxyapatite coating on AZ31 Mg alloy for implant applications. Bioinorganic Chemistry and Application (2013)1-6.
DOI: 10.1155/2013/175756
Google Scholar
[14]
A. Abdal-hay, N. A. M. Barakat, J. K. Lim, Hydroxyapatite-doped poly(lactic acid) porous film coating for enhanced bioactivity and corrosion behavior of AZ31 Mg alloy for orthopedic applications, Ceramics International 39(2013)183-195.
DOI: 10.1016/j.ceramint.2012.06.008
Google Scholar
[15]
G. Liu, L. Zhao, L. Cui, W. Liu, Y. Cao: Biomedical Materials, 2(2007)78-86.
Google Scholar
[16]
S. B. Jamaludin, N. M. S. Adzali, M. N. Derman, Microstructure and in vitro test bioactivity behavior of Co-Cr-Mo (F-75)/hydroxyapatite in phosphate buffered saline solution. Acta Metallurgica Slovaca 20(2014)82-88.
DOI: 10.12776/ams.v20i1.192
Google Scholar
[17]
Z. Li, X. Gu, S. Lou, Y. Zheng, The development of binary Mg-Caalloys for use as biodegradable materials within bone Biomaterials29(2008)1329-1344.
DOI: 10.1016/j.biomaterials.2007.12.021
Google Scholar
[18]
C. Wu and Y. Xiao, Evaluation of invitro bioactivity of bioceramic. Bone and Tissue Regeneration Insights 2(2009)25-29.
Google Scholar
[19]
Z. G. Huan, S. Leeflang, J. Zhou, W. Zhai, J. Chang, J. Duszczyk, In vitro degradation behavior and bioactivity of magnesium-Bioglass composites for orthopedic applications. Journal of Biomedical Materials Research Part B (2011)437-446.
DOI: 10.1002/jbm.b.31968
Google Scholar
[20]
Z. G. Huan, M. A. Leeflang, J. Zhou, J. Duszczyk, ZK30-Bioactive glass composites for orthopedic applications: A comparative study on fabrication method and characteristics. Materials Science and Engineering B 176(2011)1644-1652.
DOI: 10.1016/j.mseb.2011.07.022
Google Scholar
[21]
J. Lu, J. Wei, Q. Gan, X. Lu, et. al, Preparation, bioactivity, degradability and primary cell responses to an ordered mesoporous magnesium-calcium silicate. Microporous and Mesoporous Materials 163(2012)221-228.
DOI: 10.1016/j.micromeso.2012.06.037
Google Scholar
[22]
R. Hill, An alternative view of the degradation of bioglass. Journal of Materials Science Letters 15(1996) 1122-1125.
Google Scholar
[23]
X. Liu, C. Ding, P. K. Chu, Mechanism of apatite formation on wollastonite coatings in simulated body fluids, Biomaterials 25(2004) 1755-1761.
DOI: 10.1016/j.biomaterials.2003.08.024
Google Scholar
[24]
H. Ye, X. Y. Liu, H. Hong, Cladding of titanium/hydroxyapatite composites onto Ti6Al4V for load bearing implant application. Materials Science and Engineering C 29(2009)2036-(2044).
DOI: 10.1016/j.msec.2009.03.021
Google Scholar
[25]
X. Yang, L. Li, J. He, H. Guo, J. Zhang, In vitro corrosion and bioactivity study of surface phytic acid modified AZ31 magnesium alloy, Materials Science and Application, 5(2014)59-65.
DOI: 10.4236/msa.2014.52009
Google Scholar