A Short Review on In Vitro Bioactivity Behavior of Magnesium Composites

Article Preview

Abstract:

Research and development on the biomaterials are increasing due to the demand for materials that can bond to the living bones and by any chance can avoid second surgery procedure. Good bonding between bones and biomaterials or artificial implant can avoid loosening that due to the friction and wear. Currently, magnesium alloys are being actively researched because of their ability to serve as structural support in short term and can be absorbed in the body after healing process is completed. The addition of bioactive components such as hydroxyapatite and bioglass into magnesium is made to improve the bioactivity behavior of magnesium alloys. This paper summarizes the past and current studies of magnesium alloys in regards of in vitro bioactivity behavior, biomineralization and apatite formation mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

367-372

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Li, Y. Zheng, Novel magnesium alloys developed for biomedical application: A review, Journal Materials Science Technology 29(6) (2013)489-502.

DOI: 10.1016/j.jmst.2013.02.005

Google Scholar

[2] M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials 27(2006) 1728-1734.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[3] X. N. Gu, Y. F. Zheng, S. P. Zhong, T. F. Xi, J. Q. Wang, and W. H. Wang, Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses, Biomaterials, 31(2010)1093-1103.

DOI: 10.1016/j.biomaterials.2009.11.015

Google Scholar

[4] L. L. Hench, The story of Bioglass Journal of Materials Science: Materials Medicine 17(2006) 967-978.

Google Scholar

[5] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27(2006)2907-2915.

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[6] M. H. Fathi, A. Doostmohammadi, Bioactive glass nanopowder and bioglass coating for biocompability improvement of metallic implant. Journal of Materials Processing Technology, 209(2009)1385-1391.

DOI: 10.1016/j.jmatprotec.2008.03.051

Google Scholar

[7] M. A. F. Zaludin, S. B. Jamaludin, M. S. Idris, N. A. Llah, Effect of 45S5 bio-glass particles on physical properties and corrosion resistance of the mg-5zn matrix composite, Open Journal of Metal, 4 (2014) 1-8.

DOI: 10.4236/ojmetal.2014.41001

Google Scholar

[8] N. M. Shima Adzali, S. B. Jamaludin, M. N. Derman, Mechanical properties, corrosion behavior and bioactivity of composite metal alloys added with ceramic for biomedical applications, Review Advance Materials Science, 30 (2012) 262-266.

Google Scholar

[9] M. Kheradmandfard, M. H. Fathi,M. Ahangarian, E. Mohammadi Zahrani, In vitro bioactivity evaluation of magnesium-substituted fluorapatite nanopowders. Ceramics International 38(2012)169-175.

DOI: 10.1016/j.ceramint.2011.05.157

Google Scholar

[10] M. Razavi, M. H. Fathi, M. Meratian, Fabrication and characterization of magnesium-fluoroapatite nanocomposites for biomedical application. Materials Characterization 61(2010)1363-1370.

DOI: 10.1016/j.matchar.2010.09.008

Google Scholar

[11] Y. K. Pan, C. Z. Chen, D. G. Wan, T. G. Zhao, Effect of phosphate on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg-Zn-Zr magnesium alloy, Colloids and Surface B: Biointerfaces 109(2013)1-9.

DOI: 10.1016/j.colsurfb.2013.03.026

Google Scholar

[12] H. Tang, F. Wang, Synthesis and properties of CaTiO3-containing coating on AZ31 magneisum alloy by micro-arc oxidation. Materials Letters 93(2013)427-430.

DOI: 10.1016/j.matlet.2012.11.017

Google Scholar

[13] S. A. Salman, K. Kuroda, M. Okido, Preparation and characterization of hydroxyapatite coating on AZ31 Mg alloy for implant applications. Bioinorganic Chemistry and Application (2013)1-6.

DOI: 10.1155/2013/175756

Google Scholar

[14] A. Abdal-hay, N. A. M. Barakat, J. K. Lim, Hydroxyapatite-doped poly(lactic acid) porous film coating for enhanced bioactivity and corrosion behavior of AZ31 Mg alloy for orthopedic applications, Ceramics International 39(2013)183-195.

DOI: 10.1016/j.ceramint.2012.06.008

Google Scholar

[15] G. Liu, L. Zhao, L. Cui, W. Liu, Y. Cao: Biomedical Materials, 2(2007)78-86.

Google Scholar

[16] S. B. Jamaludin, N. M. S. Adzali, M. N. Derman, Microstructure and in vitro test bioactivity behavior of Co-Cr-Mo (F-75)/hydroxyapatite in phosphate buffered saline solution. Acta Metallurgica Slovaca 20(2014)82-88.

DOI: 10.12776/ams.v20i1.192

Google Scholar

[17] Z. Li, X. Gu, S. Lou, Y. Zheng, The development of binary Mg-Caalloys for use as biodegradable materials within bone Biomaterials29(2008)1329-1344.

DOI: 10.1016/j.biomaterials.2007.12.021

Google Scholar

[18] C. Wu and Y. Xiao, Evaluation of invitro bioactivity of bioceramic. Bone and Tissue Regeneration Insights 2(2009)25-29.

Google Scholar

[19] Z. G. Huan, S. Leeflang, J. Zhou, W. Zhai, J. Chang, J. Duszczyk, In vitro degradation behavior and bioactivity of magnesium-Bioglass composites for orthopedic applications. Journal of Biomedical Materials Research Part B (2011)437-446.

DOI: 10.1002/jbm.b.31968

Google Scholar

[20] Z. G. Huan, M. A. Leeflang, J. Zhou, J. Duszczyk, ZK30-Bioactive glass composites for orthopedic applications: A comparative study on fabrication method and characteristics. Materials Science and Engineering B 176(2011)1644-1652.

DOI: 10.1016/j.mseb.2011.07.022

Google Scholar

[21] J. Lu, J. Wei, Q. Gan, X. Lu, et. al, Preparation, bioactivity, degradability and primary cell responses to an ordered mesoporous magnesium-calcium silicate. Microporous and Mesoporous Materials 163(2012)221-228.

DOI: 10.1016/j.micromeso.2012.06.037

Google Scholar

[22] R. Hill, An alternative view of the degradation of bioglass. Journal of Materials Science Letters 15(1996) 1122-1125.

Google Scholar

[23] X. Liu, C. Ding, P. K. Chu, Mechanism of apatite formation on wollastonite coatings in simulated body fluids, Biomaterials 25(2004) 1755-1761.

DOI: 10.1016/j.biomaterials.2003.08.024

Google Scholar

[24] H. Ye, X. Y. Liu, H. Hong, Cladding of titanium/hydroxyapatite composites onto Ti6Al4V for load bearing implant application. Materials Science and Engineering C 29(2009)2036-(2044).

DOI: 10.1016/j.msec.2009.03.021

Google Scholar

[25] X. Yang, L. Li, J. He, H. Guo, J. Zhang, In vitro corrosion and bioactivity study of surface phytic acid modified AZ31 magnesium alloy, Materials Science and Application, 5(2014)59-65.

DOI: 10.4236/msa.2014.52009

Google Scholar