[1]
Browne, M., Gregson, P. J., Effect of mechanical surface pretreatment on metal ion release. Biomaterials, 21, (2000), pp.385-392.
DOI: 10.1016/s0142-9612(99)00200-8
Google Scholar
[2]
Barros, R. R. M., Novaes Jr., A. B., Papalexiou, V., Souza, S. L. S., Taba Jr., M., Palioto, D. B., Grisi, M. F. M., Effect Of Biofunctionalized Implant Surface On Osseointegration - A Histomorphometric Study In Dogs. Brazilian Dental Journal, 20, (2009).
DOI: 10.1590/s0103-64402009000200001
Google Scholar
[3]
Iwaya, Y., Machigashira, M., Kanbara, K., Miyamoto, M., Noguchi, K., Izumi, Y., Ban, S., Surface properties and biocompatibility of acid-etched titanium. Dental Material Journal, 27, (2008), pp.415-421.
DOI: 10.4012/dmj.27.415
Google Scholar
[4]
Lin, X., Zhou, L., Li, S., Lu, H., Ding, X., Behavior of acid etching on titanium: topography, hydrophility and hydrogen concentration. Biomedical Materials, 9, (2014), p.015002.
DOI: 10.1088/1748-6041/9/1/015002
Google Scholar
[5]
Zhang, F., Yang, G. L., He, F. M., Zhang, L. J., Zhao, S. F., Cell response of titanium implant with a roughened surface containing titanium hydride: an in vitro study. Journal of Oral Maxillofacial Surgury, 68, (2010), p.1131–1139.
DOI: 10.1016/j.joms.2009.12.027
Google Scholar
[6]
Perrin, D., Szmukler-Moncler, S., Echikou, C., Pointaire, P., Bernard, J. P., Bone response to alteration of surface topography and surface composition of sandblasted and acid etched (SLA) implants. Clinical Oral Implants Research, 13, (2002).
DOI: 10.1034/j.1600-0501.2002.130504.x
Google Scholar
[7]
Cho, S. -A., Park, K. -T., The removal torque of titanium screw inserted in rabbit tibia treated by dual acid etching. Biomaterials, 24, (2003), p.3611–3617.
DOI: 10.1016/s0142-9612(03)00218-7
Google Scholar
[8]
Yang, G. –L., He, F. –M., Yang, X. –F., Wang, X. -X., Zhao, S. -F., Bone response to titanium implant surface-roughened by sandblasted and double acid etched treatments in a rabbit model. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 106, (2008).
DOI: 10.1016/j.tripleo.2008.03.017
Google Scholar
[9]
Bagno, A., Bello, C., Surface treatments and roughness properties of Ti-based biomaterials. Journal of Materials Science: Materials in Medicine, 15, (2004), pp.935-940.
DOI: 10.1023/b:jmsm.0000042679.28493.7f
Google Scholar
[10]
De Oliveira, P. T., Zalzal, S. F., Beloti, M. M., Rosa, A. L., Nanci, A., Enhancement of in vitro osteogenesis on titanium by chemically produced nanotopography. Journal of Biomedical Materials Research Part A, 80, (2007), pp.554-564.
DOI: 10.1002/jbm.a.30955
Google Scholar
[11]
Aronsson, B. O., Hjorvarsson, B., Frauchiger, L., Taborelli, M., Vallotton, P. H., Descouts, P., Hydrogen desorption from sand-blasted and acid-etched titanium surfaces after glow-discharge treatment. Journal of Biomedical Materials Research Part A, 54, (2001).
DOI: 10.1002/1097-4636(200101)54:1<20::aid-jbm3>3.0.co;2-z
Google Scholar
[12]
Szmukler-Moncler, S., Bischof, M., Nedir, R., Ermrich, M., Titanium hydride and hydrogen concentration in acid-etched commercially pure titanium and titanium alloy implants: a comparative analysis of five implant systems. Clinical Oral Implants Resesearch, 21, (2010).
DOI: 10.1111/j.1600-0501.2010.01938.x
Google Scholar
[13]
Nagaoka, A., Yokoyama, K. I., Sakai, J. I., Evaluation of hydrogen absorption behaviour during acid etching for surface modification of commercial pure Ti, Ti–6Al–4V and Ni–Ti superelastic alloys. Corrosion Sciences, 52, (2010), p.1130–1138.
DOI: 10.1016/j.corsci.2009.12.029
Google Scholar
[14]
Rodrigues, D. C., Urban, R. M., Jacobs, J. J., Gilbert, J. L., In vivo severe corrosion and hydrogen embrittlement of retrieved modular body titanium alloy hip-implants. Journal of Biomedical Materials Resesearch Part B, 88, (2009), p.206–219.
DOI: 10.1002/jbm.b.31171
Google Scholar
[15]
Noh, S. R., Im, T. Y., Lee, E. Y., Jang, H. N., Dung, T. D., Kim, M.S., Yoo, H., Comparison of surface roughness effects upon the attachment of osteoblastic progenitor MC3T3-E1 cells and inflammatory RAW 264. 7 cells to a titanium disc. International Journal of Oral Biology, 34, (2009).
Google Scholar
[16]
Wang, F., Shic, L., He, W. –X., Han, D., Yan, Y., Niu, Z. -Y., Shi, S. -G., Bioinspired micro/nano fabrication on dental implant–bone interface. Applied Surface Science 265, (2013), p.480– 488.
DOI: 10.1016/j.apsusc.2012.11.032
Google Scholar
[17]
Buser, D., Schenk, R. K, Steinemann, S., Fiorellini, J. P, Fox C. H., Stich, H., Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature. Journal Biomedical Materials Resesearch, 25, (1991).
DOI: 10.1002/jbm.820250708
Google Scholar
[18]
Juodzbalys, G., Sapragoniene, M., Wennerberg, A., New acid etched titanium dental implant surface. Stomatologija, Baltic Dental and Maxillofacial Journal, 5, (2003), pp.101-105.
Google Scholar