[1]
Shi Y, Qi M, Chen Y, Shi P. MAO-DCPD composite coating on Mg alloy for degradable implant applications. Materials Letters. (2011) 65(14): 2201-4.
DOI: 10.1016/j.matlet.2011.04.037
Google Scholar
[2]
Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. (2005) 26(17): 3557-63.
DOI: 10.1016/j.biomaterials.2004.09.049
Google Scholar
[3]
Song G. Control of biodegradation of biocompatable magnesium alloys. Corrosion Science. (2007) 49(4): 1696-701.
DOI: 10.1016/j.corsci.2007.01.001
Google Scholar
[4]
Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials. (2006) 27(9): 1728-34.
DOI: 10.1016/j.biomaterials.2005.10.003
Google Scholar
[5]
Li N, Zheng Y. Novel Magnesium Alloys Developed for Biomedical Application: A Review. Journal of Materials Science & Technology. (2013) 29(6): 489-502.
DOI: 10.1016/j.jmst.2013.02.005
Google Scholar
[6]
Purnama A, Hermawan H, Couet J, Mantovani D. Assessing the biocompatibility of degradable metallic materials: State-of-the-art and focus on the potential of genetic regulation. Acta Biomaterialia. (2010) 6(5): 1800-7.
DOI: 10.1016/j.actbio.2010.02.027
Google Scholar
[7]
Tan L, Yu X, Wan P, Yang K. Biodegradable Materials for Bone Repairs: A Review. Journal of Materials Science & Technology. (2013) 29(6): 503-13.
DOI: 10.1016/j.jmst.2013.03.002
Google Scholar
[8]
Callister WD, Rethwisch DG. Materials Science and Engineering: An Introduction: John Wiley & Sons Canada, Limited, (2009).
Google Scholar
[9]
Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. (2006) 27(15): 2907-15.
DOI: 10.1016/j.biomaterials.2006.01.017
Google Scholar
[10]
Kirkland N, Staiger M, Nisbet D, Davies CJ, Birbilis N. Performance-driven design of Biocompatible Mg alloys. JOM. (2011) 63(6): 28-34.
DOI: 10.1007/s11837-011-0089-z
Google Scholar
[11]
H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir, A. Ourdjini, M. Medraj, M. Daroonparvar, E. Hamzah, Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys. Materials and Design (2014).
DOI: 10.1016/j.matdes.2013.06.055
Google Scholar
[12]
Zhang B, Hou Y, Wang X, Wang Y, Geng L. Mechanical properties, degradation performance and cytotoxicity of Mg–Zn–Ca biomedical alloys with different compositions. Materials Science and Engineering: C. (2011) 31(8): 1667-73.
DOI: 10.1016/j.msec.2011.07.015
Google Scholar
[13]
H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, S. Farahany, Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg-0. 5Ca-xZn alloys. Corrosion Science. (2012) 64, 184-197.
DOI: 10.1016/j.corsci.2012.07.015
Google Scholar
[14]
M. Razavi, M.H. Fathi, M. Meratian, Mater. Sci. Eng., A527(2010)6938–6944.
Google Scholar
[15]
S.X. Zhang, J.N. Li, Y. Song, C.L. Zhao, X.N. Zhang, C.Y. Xie, Y. Zhang, H.R. Tao, Y.H. He , Y. Jiang, Y.J. Bian, Mater. Sci. Eng. C 29 (2009) 1907–(1912).
Google Scholar
[16]
Wang, X.; Dong, L. H.; Ma, X. L.; Zheng, Y. F., Microstructure, mechanical property and corrosion behaviors of interpenetrating C/Mg-Zn-Mn composite fabricated by suction casting. Materials Science and Engineering: C (2013) 33 (2), 618-625.
DOI: 10.1016/j.msec.2012.10.006
Google Scholar