[1]
A. Abdal-hay, N. A. M. Barakat, J. K. Lim, Hydroxyapatite-doped poly(lactic acid) porous film coating for enhanced bioactivity and corrosion behavior of AZ31 Mg alloy for orthopedic applications. Ceramics International 39(2013)183-195.
DOI: 10.1016/j.ceramint.2012.06.008
Google Scholar
[2]
J. Liu, Q. Wang, H. Zhou, W. Guo, Microstructure and mechanical properties of NZ30K magnesium alloy processed by repititive upsetting. Journal of Alloys and Compounds 589(2011)372-377.
DOI: 10.1016/j.jallcom.2013.12.008
Google Scholar
[3]
N. Li and Y. Zheng, Novel magnesium alloys developed for biomedical application: A review. Journal of Materials Science & Technology 29(6)(2013)489-502.
DOI: 10.1016/j.jmst.2013.02.005
Google Scholar
[4]
K. Kim & J. Yoon, Evolution of the microstructure and mechanical properties of AZ61 alloy processed by half channel angular extrusion (HCAE), a novel severe plastic deformation process. Materials Science and Engineering A 578(2013)160-166.
DOI: 10.1016/j.msea.2013.04.073
Google Scholar
[5]
X. N. Gu, Y. F. Zheng, A review on magnesium alloys as biodegradable materials. Frontiers of Materials Science in China 4(2) (2010), 111-115.
Google Scholar
[6]
D. P. Sharma, A. McGoron, In vitro degradation behavior of ternary Mg-Zn-Se and Mg-Zn as biomaterials. Journal of Biomimetic, Biomaterials &Tissue Engineering 12(2011), 1-25.
DOI: 10.4028/www.scientific.net/jbbte.17.25
Google Scholar
[7]
B. P. Zhang, Y. Wang, L. Weng, Biomaterials-Physics and Chemistry. Prof. RosarioPignatello (Ed. ), ISBN: 978-953-307-418-4, InTech.
Google Scholar
[8]
N. M. S. Adzali, S. B. Jamaludin, M. N. Derman, Mechanical properties, corrosion behavior and bioactivity of the composite metal alloys added with ceramic for biomedical applications. Review Advanced Materials Science 30(2012)262-266.
Google Scholar
[9]
J. Liu, Q. Wang, H. Zhou, W. Guo, Microstructure andmachanical properties of NZ30K magnesium alloy processed by repetitive upsetting. Journal of Alloys and Compounds 589(2014)372-377.
DOI: 10.1016/j.jallcom.2013.12.008
Google Scholar
[10]
L. Lefebre, J. Chevalier, L. Gremillard, R. Zenatti, G. Thollet, D. Bernache-Assolant, A. Govin, Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Materialia 55(2007)3305-3313.
DOI: 10.1016/j.actamat.2007.01.029
Google Scholar
[11]
R. M. German, Powder Metallurgy Science. Second ed., New Jersey, USA, (1994).
Google Scholar
[12]
A. F. Habibe, L. D. Maeda, R. C. Souza, M. J. R. Barboza, J. K. M. F. Daguona, S. O. Rogero, C. Santos, Effect of bioglass additions on the sintering of Y-TZP bioceramics. Materials Science and Engineering C 29(2009)1959-(1964).
DOI: 10.1016/j.msec.2009.03.006
Google Scholar
[13]
Z. G. Huan, M. A. Leeflang, J. Zhou, J. Duszczyk, ZK30-Bioactive glass composites for orthopedic applications: A comparative study on fabrication method and characteristics. Materials Science and Engineering B 176(2011)1644-1652.
DOI: 10.1016/j.mseb.2011.07.022
Google Scholar
[14]
M. A. F. Zaludin, S. B. Jamaludin, M. S. Idris, N. A. Llah, Effect of 45S5 Bio-Glass particles on physical properties and corrosion resistance of the Mg-5Zn matrix composites. Open Journal of Metal 4(2014)1-8.
DOI: 10.4236/ojmetal.2014.41001
Google Scholar
[15]
Z. S. Seyedraoufi& Sh. Mirdamadi, Synthesis, microstructure and mechanical properties of porous Mg-Zn scaffolds. Journal of the Mechanical Behavior of Biomedical Materials 21(2013)1-8.
DOI: 10.1016/j.jmbbm.2013.01.023
Google Scholar
[16]
Z. G. Huan, S. Leeflang, J. Zhou, W. Zhai, J. Chang, J. Duszczyk, In vitro degradation behavior and bioactivity of magnesium-Bioglass composites for orthopedic applications. Journal of Biomedical Materials Research Part B 100B(2012)437-446.
DOI: 10.1002/jbm.b.31968
Google Scholar