[1]
E. Pirhonen, Fibres and Composites for Potential Biomaterials Applications. Tampereen Teknillinen Yliopisto. Julkaisu-Tampere University of Technology. Publication 599, (2006).
Google Scholar
[2]
J. S. Temenoff, A. G. Mikos, Biomaterials The Intersection of Biology and Materials Science (Pearson International Edition), Pearson Prentice Hall, New Jersey, (2008).
Google Scholar
[3]
L. Yang, E. Zhang, Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application, Materials Science and Engineering C 29 (2009) 1691–1696.
DOI: 10.1016/j.msec.2009.01.014
Google Scholar
[4]
X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials 30 (2009) 484-498.
DOI: 10.1016/j.biomaterials.2008.10.021
Google Scholar
[5]
Z. G. Huan, M. A. Leeflang, J. Zhou, J. Duszczyk, ZK30-bioactive glass composites for orthopedic application: A comparative study on fabrication method and characteristics, Materials Science and Engineering B 20 (2011) 1644-1652.
DOI: 10.1016/j.mseb.2011.07.022
Google Scholar
[6]
N. I. Zainal Abidin, D. Martin, A. Atrens, Corrosion of high purity Mg, AZ91, ZE41 and Mg2Zn0. 2Mn in Hank's solution at room temperature, Corrosion Science 53 (2011) 862-872.
DOI: 10.1016/j.corsci.2010.10.008
Google Scholar
[7]
X. Zhang, G. Yuan, L. Mao, J. Niu, W. Ding, Biocorrosion properties of as-extruded Mg–Nd–Zn–Zr alloy compared with commercial AZ31 and WE43 alloys, Materials Letters 66 (2012) 209-211.
DOI: 10.1016/j.matlet.2011.08.079
Google Scholar
[8]
F. Witte, N. Hort, C. Vogt, S. Cohen, K. U. Kainer, R. Willumeit, F. Feyerabend, Degradable biomaterials based on magnesium corrosion, Current Opinion in Solid State and Materials Science 12 (2008) 63-72.
DOI: 10.1016/j.cossms.2009.04.001
Google Scholar
[9]
G. Song, Control of biodegradation of biocompatible magnesium alloys, Corrosion science 49 (2007) 1696-1701.
DOI: 10.1016/j.corsci.2007.01.001
Google Scholar
[10]
M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials 27 (2006) 1728–1734.
DOI: 10.1016/j.biomaterials.2005.10.003
Google Scholar
[11]
X. Xu, L. Huang, X. Liu, X. Fu, Effects of α/β ratio in starting powder on microstructure and mechanical properties of silicon nitride ceramics, Ceramics International 28 (2002) 279–281.
DOI: 10.1016/s0272-8842(01)00091-8
Google Scholar
[12]
A. Slipenyuk, V. Kuprin, Yu. Milman, J.E. Spowart, D.B. Miracle, The effect of matrix to reinforcement particle size ratio (PSR) on the microstructure and mechanical properties of a PM processed AlCuMnSiCp MMC, Materials Science and Engineering A 381 (2004).
DOI: 10.1016/j.msea.2004.04.040
Google Scholar
[13]
S. d F. F. Mariotto, V. Guido, Y. C. Liu, C. P. Soares, K. R. Cardoso, Porous Stainless Steel for Biomedical Applications, Materials Research 14 (2) (2011) 146- 154.
DOI: 10.1590/s1516-14392011005000021
Google Scholar
[14]
D. R. Askeland, P. P. Phulé, The Science And Engineering Of Materials, International Student Ed., Cengage Learning, Ohio, (2008).
Google Scholar
[15]
ASTM– E9, Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature.
Google Scholar
[16]
M.U. Jurczyk, K. Jurczyk, A. Miklaszewski, M. Jurczyk, Nanostructured titanium-45S5 Bioglass scaffold composites for medical applications, Materials and Design 32 (2011) 4882–4889.
DOI: 10.1016/j.matdes.2011.06.005
Google Scholar
[17]
L. H Dai, Z. Ling, Y.L. Bai, Size-dependent inelastic behavior of particle-reinforced metal–matrix composites, Composite Science Technology 61, (2001) 1057– 1063.
DOI: 10.1016/s0266-3538(00)00235-9
Google Scholar
[18]
Z. Oksiuta, J.R. Dabrowski, A. Olszyna, Co–Cr–Mo-based composite reinforced with bioactive glass, Journal of materials processing technology 209 (2009) 978–985.
DOI: 10.1016/j.jmatprotec.2008.03.060
Google Scholar
[19]
S. Kawamori, T. Machida, Microstructure and Mechanical Properties of Alumina-Dispersed Magnesium Fabricated Using Mechanical Alloying Method, Materials Transactions 48 (3) (2007) 373- 379.
DOI: 10.2320/matertrans.48.373
Google Scholar
[20]
R.A. Saravanan, M.K. Surappa, Fabrication and characterisation of pure magnesium-30 vol. % SiCP particle composite, Materials Science and Engineering A276 (2000) 108–116.
DOI: 10.1016/s0921-5093(99)00498-0
Google Scholar
[21]
D. Bouvard, Densification behaviour of mixtures of hard and soft powders under pressure, Powder Technology 111 (2000) 231–239.
DOI: 10.1016/s0032-5910(99)00293-4
Google Scholar
[22]
Z. Huan, J. Zhou, J. Duszczyk, Magnesium-based composites with improved in vitro surface biocompatibility, Journal of Materials Science: Materials in Medicine 21 (2010) 3163–3169.
DOI: 10.1007/s10856-010-4165-7
Google Scholar
[23]
K. A. Khalil, A New-Developed Nanostructured Mg/HAp Nanocomposite by High Frequency Induction Heat Sintering Process, International Journal of Electrochemical Science 7 (2012) 10698 – 10710.
DOI: 10.1016/s1452-3981(23)16896-9
Google Scholar
[24]
M. Razavi, M.H. Fathi, M. Meratian, Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications, Materials Science and Engineering A 527 (2010) 6938–6944.
DOI: 10.1016/j.msea.2010.07.063
Google Scholar