Microstructure and Compressive Strength of Magnesium-Zinc Alloy Reinforced with Different Percentage of Bio-Glass Content

Article Preview

Abstract:

The objective of this work is to fabricate composite Mg-Zn filled with 45S5 bio-glass (5, 10, and 15 wt. %) via powder metallurgy. The microstructure of the sintered composite was investigated using optical microscope and scanning electron microscope. The densities of the composites were also evaluated. The densities of the compacts are increasing with increasing bio-glass content. Compression test was done by the Instron machine. The result showed that bio-glass was dispersed in the Mg-Zn matrix. Compressive strength was decreased as the amount of bio-glass increased. However, the results are still comparable to natural bone, which is important to reduce the stress shielding effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

319-324

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Pirhonen, Fibres and Composites for Potential Biomaterials Applications. Tampereen Teknillinen Yliopisto. Julkaisu-Tampere University of Technology. Publication 599, (2006).

Google Scholar

[2] J. S. Temenoff, A. G. Mikos, Biomaterials The Intersection of Biology and Materials Science (Pearson International Edition), Pearson Prentice Hall, New Jersey, (2008).

Google Scholar

[3] L. Yang, E. Zhang, Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application, Materials Science and Engineering C 29 (2009) 1691–1696.

DOI: 10.1016/j.msec.2009.01.014

Google Scholar

[4] X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials 30 (2009) 484-498.

DOI: 10.1016/j.biomaterials.2008.10.021

Google Scholar

[5] Z. G. Huan, M. A. Leeflang, J. Zhou, J. Duszczyk, ZK30-bioactive glass composites for orthopedic application: A comparative study on fabrication method and characteristics, Materials Science and Engineering B 20 (2011) 1644-1652.

DOI: 10.1016/j.mseb.2011.07.022

Google Scholar

[6] N. I. Zainal Abidin, D. Martin, A. Atrens, Corrosion of high purity Mg, AZ91, ZE41 and Mg2Zn0. 2Mn in Hank's solution at room temperature, Corrosion Science 53 (2011) 862-872.

DOI: 10.1016/j.corsci.2010.10.008

Google Scholar

[7] X. Zhang, G. Yuan, L. Mao, J. Niu, W. Ding, Biocorrosion properties of as-extruded Mg–Nd–Zn–Zr alloy compared with commercial AZ31 and WE43 alloys, Materials Letters 66 (2012) 209-211.

DOI: 10.1016/j.matlet.2011.08.079

Google Scholar

[8] F. Witte, N. Hort, C. Vogt, S. Cohen, K. U. Kainer, R. Willumeit, F. Feyerabend, Degradable biomaterials based on magnesium corrosion, Current Opinion in Solid State and Materials Science 12 (2008) 63-72.

DOI: 10.1016/j.cossms.2009.04.001

Google Scholar

[9] G. Song, Control of biodegradation of biocompatible magnesium alloys, Corrosion science 49 (2007) 1696-1701.

DOI: 10.1016/j.corsci.2007.01.001

Google Scholar

[10] M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials 27 (2006) 1728–1734.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[11] X. Xu, L. Huang, X. Liu, X. Fu, Effects of α/β ratio in starting powder on microstructure and mechanical properties of silicon nitride ceramics, Ceramics International 28 (2002) 279–281.

DOI: 10.1016/s0272-8842(01)00091-8

Google Scholar

[12] A. Slipenyuk, V. Kuprin, Yu. Milman, J.E. Spowart, D.B. Miracle, The effect of matrix to reinforcement particle size ratio (PSR) on the microstructure and mechanical properties of a PM processed AlCuMnSiCp MMC, Materials Science and Engineering A 381 (2004).

DOI: 10.1016/j.msea.2004.04.040

Google Scholar

[13] S. d F. F. Mariotto, V. Guido, Y. C. Liu, C. P. Soares, K. R. Cardoso, Porous Stainless Steel for Biomedical Applications, Materials Research 14 (2) (2011) 146- 154.

DOI: 10.1590/s1516-14392011005000021

Google Scholar

[14] D. R. Askeland, P. P. Phulé, The Science And Engineering Of Materials, International Student Ed., Cengage Learning, Ohio, (2008).

Google Scholar

[15] ASTM– E9, Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature.

Google Scholar

[16] M.U. Jurczyk, K. Jurczyk, A. Miklaszewski, M. Jurczyk, Nanostructured titanium-45S5 Bioglass scaffold composites for medical applications, Materials and Design 32 (2011) 4882–4889.

DOI: 10.1016/j.matdes.2011.06.005

Google Scholar

[17] L. H Dai, Z. Ling, Y.L. Bai, Size-dependent inelastic behavior of particle-reinforced metal–matrix composites, Composite Science Technology 61, (2001) 1057– 1063.

DOI: 10.1016/s0266-3538(00)00235-9

Google Scholar

[18] Z. Oksiuta, J.R. Dabrowski, A. Olszyna, Co–Cr–Mo-based composite reinforced with bioactive glass, Journal of materials processing technology 209 (2009) 978–985.

DOI: 10.1016/j.jmatprotec.2008.03.060

Google Scholar

[19] S. Kawamori, T. Machida, Microstructure and Mechanical Properties of Alumina-Dispersed Magnesium Fabricated Using Mechanical Alloying Method, Materials Transactions 48 (3) (2007) 373- 379.

DOI: 10.2320/matertrans.48.373

Google Scholar

[20] R.A. Saravanan, M.K. Surappa, Fabrication and characterisation of pure magnesium-30 vol. % SiCP particle composite, Materials Science and Engineering A276 (2000) 108–116.

DOI: 10.1016/s0921-5093(99)00498-0

Google Scholar

[21] D. Bouvard, Densification behaviour of mixtures of hard and soft powders under pressure, Powder Technology 111 (2000) 231–239.

DOI: 10.1016/s0032-5910(99)00293-4

Google Scholar

[22] Z. Huan, J. Zhou, J. Duszczyk, Magnesium-based composites with improved in vitro surface biocompatibility, Journal of Materials Science: Materials in Medicine 21 (2010) 3163–3169.

DOI: 10.1007/s10856-010-4165-7

Google Scholar

[23] K. A. Khalil, A New-Developed Nanostructured Mg/HAp Nanocomposite by High Frequency Induction Heat Sintering Process, International Journal of Electrochemical Science 7 (2012) 10698 – 10710.

DOI: 10.1016/s1452-3981(23)16896-9

Google Scholar

[24] M. Razavi, M.H. Fathi, M. Meratian, Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications, Materials Science and Engineering A 527 (2010) 6938–6944.

DOI: 10.1016/j.msea.2010.07.063

Google Scholar