[1]
J. Čapek and D. Vojtěch, Properties of porous magnesium prepared by powder metallurgy, Materials Science and Engineering. C 33 (2013) 564–569.
DOI: 10.1016/j.msec.2012.10.002
Google Scholar
[2]
S. B. Jamaludin, N. M. S. Adzali, M. N. Derman, Microstructure and in-vitro test bioactivity behavior of Co-Cr- Mo (F-75)/hydroxyapatite in phosphate buffered saline solution, Acta Metallurgica Slovaca. 20 (2014) 82-88.
DOI: 10.12776/ams.v20i1.192
Google Scholar
[3]
Z. Che Daud, S. B. Jamaludin, The effect of sintering on the properties of powder metallurgy (PM) F-75 alloy, Advanced Materials Research. 795 (2013) 573-577.
DOI: 10.4028/www.scientific.net/amr.795.573
Google Scholar
[4]
N. M. S. Adzali, S. B. Jamaludin, M. N. Derman, Mechanical properties, corrosion behavior and bioactivity of composite metal alloys added with ceramic for biomedical applications, Review Advance Materials Science, 30 (2012) 262-266.
Google Scholar
[5]
M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials, Biomaterials 27 (2006) 1728–1734.
DOI: 10.1016/j.biomaterials.2005.10.003
Google Scholar
[6]
D. P Sharma, A. McGoron, Journal of Biomimetic, Biomaterials & Tissue Engineering. 12 (2011) 1-25.
Google Scholar
[7]
E. Zhang, D. Yin, L. Xu, L. Yang, K. Yang, Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Mater Sci Eng C 29 (2009) 987–993.
DOI: 10.1016/j.msec.2008.08.024
Google Scholar
[8]
L.N. Zhang, Z.T. Hou, X. Ye, Z. B, Xu, X. L. Bai, P. Shang, The effect of selected alloying element additions on properties of Mg-based alloy as bioimplants: A literature review, Front. Mater. Sci, 7(3) (2013) 227-236.
DOI: 10.1007/s11706-013-0210-z
Google Scholar
[9]
H. Tapiero and K.D. Tew, Trace elements in human physiology and pathology: zinc and metallothioneins, Biomedicine & Pharmacotherapy. 57 (2003) 399-411.
DOI: 10.1016/s0753-3322(03)00081-7
Google Scholar
[10]
Y. Sun, B. Zhang, L. Wang, L . Geng and X. Jiao, Preparation and characterization of a new biomedical Mg–Zn–Ca alloy, Materials and Design. 34 (2012) 58-64.
DOI: 10.1016/j.matdes.2011.07.058
Google Scholar
[11]
S. Zhang, X. Zhang, C. Zhao, J. Li, Y . Song,C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang and Y. Bian, Research on an Mg–Zn alloy as a degradable biomaterial, Acta Biomaterialia. 6 (2010) 626–640.
DOI: 10.1016/j.actbio.2009.06.028
Google Scholar
[12]
L. Xu, G. Yu, E. Zhang, F. Pan and K. Yang, In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application, Journal of Biomedical Materials Research PartA. 18A (2007) 703-711.
DOI: 10.1002/jbm.a.31273
Google Scholar
[13]
G. Song, A. Atrens, D. St John, An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys, Magnesium Technology 2001, (2001) 255-262.
DOI: 10.1002/9781118805497.ch44
Google Scholar
[14]
Z. G. Huan, M. A. Leeflang, J. Zhou, J. Duszcyk, ZK30-bioactive glass composites for orthopedic applications: A comparative study on fabrication method and characteristics, Materials Science and Engineering B, 176 (2011) 1644-1652.
DOI: 10.1016/j.mseb.2011.07.022
Google Scholar
[15]
M.A.F. Zaludin, S.B. Jamaludin, M. S. Idris, N. A. Llah, Effect of 45S5 Bio-Glass Particles on Physical Properties and Corrosion Resistance of the Mg-5Zn matrix composite, Open Journal of Metal, 4, 1-8.
DOI: 10.4236/ojmetal.2014.41001
Google Scholar
[16]
Y. Song, E.H. Han, D. Shan, C.D. Yim and B.S. You, The effect of Zn concentration on the corrosion behavior of Mg-xZn alloys, Corrosion Science. 65(2012) 322-330.
DOI: 10.1016/j.corsci.2012.08.037
Google Scholar
[17]
T. Prosek, A. Nazarov, U. Bexell D. Thierry, J. Serak, Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions, Corrosion Science 50 (2008) 2216–2231.
DOI: 10.1016/j.corsci.2008.06.008
Google Scholar