Physical Vapor Transport Growth of 4H-SiC on {000-1} Vicinal Surfaces

Article Preview

Abstract:

Bulk 4H-SiC crystals were grown on 4° off-axis seeds by the physical vapor transport technique. Two completely different surface morphologies of as-grown crystals were observed by laser scanning confocal microscopy. The formation mechanisms of the different surface morphologies are proposed and discussed. We found that the facet formation and migration on the 4° off-axis seeds largely depended on the profile evolution of the temperature field in the growth cell over a long-term growth run. At the interface between the two growth regimes, some grown-in defects, including micropipes, dislocations and polytype inclusions, were frequently observed by polarizing optical microscopy and chemical etching. The stress induced by step coalescence could be responsible for the formation of these grown-in defects.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 821-823)

Pages:

68-72

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Ruff, H. Hitlehner, R. Helbig, IEEE Trans. Electron. Dev. 41 (1994) 1040.

Google Scholar

[2] M. Bhatnagar, B. J. Baliga, IEEE Trans. Electron. Dev. 40 (1993) 645.

Google Scholar

[3] H. Matsunami, T. Kimoto, Mater. Sci. Engineer 20 (1997) 125.

Google Scholar

[4] T. Kimoto, H. Nishino, W. S. Yoo, H. Matsunami, J. Appl. Phys. 73 (1993) 726.

Google Scholar

[5] T. Kimoto, A. Itoh, W. S. Yoo, H. Matsunami, Phys. Stat. Sol. B. 202 (1997) 247.

Google Scholar

[6] T. Kimoto, H. Matsunami, J. Appl. Phys. 75 (1993) 850.

Google Scholar

[7] Xiaobo Hu, Xiangang Xu, Xianxiang Li, Shouzhen Jiang, Juan Li, Li Wang, Jiyang Wang, Minhua Jiang, J. Cryst. Growth 292 (2006) 192.

Google Scholar

[8] D. Schulz, M. Lechner, H. J. Rost, D. Siche, J. Wollweber, Mater. Sci. Forum Vol. 433-436 (2003) 17.

Google Scholar

[9] R.V. Drachev, D.I. Cherednichenko, T.S. Sudarshan, J. Cryst. Growth 265 (2004) 179.

Google Scholar

[10] J. J. Gilman, The Art and Science of Growing Crystals, Wiley, (1963) p.276.

Google Scholar

[11] M. V. Bogdanov, A. O. Galyukov, S. Yu. Karpov, A. V. Kulik, S. K. Kochuguev, D. Kh. Ofengeim, A. V. Tsirulnikov, M. S. Ramm, A. I. Zhmakin, Yu. N. Makarov, J. Cryst. Growth 225 (2001) 307.

DOI: 10.1016/s0022-0248(01)00879-x

Google Scholar

[12] Z. G. Herro, B. M. Epelbaum, M. Bickermann, P. Masri, A. Winnacker, J. Crystal Growth 262 (2004) 105.

DOI: 10.1016/j.jcrysgro.2003.10.060

Google Scholar

[13] Z. G. Herro, B. M. Epelbaum, R. Weingartner, M. Bickermann, P. Masri, A. Winnacker, J. Cryst. Growth 270 (2004)113.

Google Scholar

[14] Yingmin Wang, Juan Li, Lina Ning, Yuqiang Gao, Xiaobo Hu, Xiangang Xu, J. Cent. South Univ. Technol. 16 (2009) 0344-0348.

Google Scholar

[15] Lina Ning, Xiaobo Hu, Xiangang Xu, Xiufang Chen, Yingmin Wang, Shouzhen Jiang and Juan Li, J. Appl. Cryst. 41 (2008) 939.

Google Scholar