Preparation and Characterization of Magnetic Carbonate Apatite/Chitosan/Alginate Composite Scaffold

Article Preview

Abstract:

Treatment for bone cancer has begun to be experimented with ferrimagnetic for magnetic induction hyperthermia. On the other hand, composites of bioceramics and biopolymer have been studied for scaffold as these materials resemble the structure of bone. The current study investigated the magnetization of calcium aluminum ferrite magnetic (CaAl4Fe8O19) incorporated in carbonate apatite, alginate and chitosan, that serves as a scaffold. CaAl4Fe8O19 powder were synthesized using calcium nitrate, aluminium nitrate and ferrous chloride using the sol-gel method. Combining the carbonate apatite/chitosan/alginate compoiste and CaAl4Fe8O19 using the freeze-dry method has produced carbonate apatite/alginate/chitosan/CaAl4Fe8O19 composite scaffolds. The CaAl4Fe8O19 powder and the scaffolds were observed using SEM (scanning electrone microscope) and their magnetization were measured using VSM (vibrating sample magnetometer). It was shown that the scaffold is a composite structure of CaAl4Fe8O19 particles, having diameter ranging from 0.5 to 2 µm, embedded in the pore walls of the carbonate apatite/alginate/chitosan matrix. The saturation magnetization Ms and remanence magnetization Mr of the CaAl4Fe8O19 particles were 20 and 2.0 emu/g, whereas, those of the magnetic scaffold were 4.3 and 2.0 emu/gr. The addition of the carbonate apatite/alginate/chitosan composite into CaAl4Fe8O19 decreased the fraction and/or magnetic of the CaAl4Fe8O19 particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-80

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Rivas, M. Ban˜obre-Lo´pez, Y. Pin˜eiro-Redondo, B. Rivas, M.A. Lo´ pez-Quintela, Magnetic nanoparticles for applicationin cancer therapy, Journal of Magnetism and Magnetic Materials 324 (2012) 3499–3502.

DOI: 10.1016/j.jmmm.2012.02.075

Google Scholar

[2] E. Kurgan, P. Gas, Estimation of Temperature Distribution Inside Tissues in External RF Hyperthermia, Electrical Review (Przegląd Elektrotechniczny) 12 (2010) 100-102.

Google Scholar

[3] T. Iwasaki, R. Nakatsuka, K. Murase, H. Takata, H. Nakamura, S. Watano. Simple and Rapid Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatments via a Mechanochemical Route, Int. J. Mol. Sci. 14 (2013) 9365-9378.

DOI: 10.3390/ijms14059365

Google Scholar

[4] C. Wu, W. Fan, Y. Zhu, M. Gelinsky, J. Chang, G. Cuniberti, V. Albrecht, T. Friis, Y. Xiao, Magnetic mesoporous bioactive glass scaffolds with hierarchical pore structure and multifunction, Acta Biomaterilia 7 (2011) 3563-3572.

DOI: 10.1016/j.actbio.2011.06.028

Google Scholar

[5] I. D. Ana, S. Matsuya, K. Ishikawa, Engineering of Carbonate Apatite Bone Substitute Based on Composition-Transformation of Gypsum and Calcium Hydroxide, Scientific Research 2 (2010) 344-352.

DOI: 10.4236/eng.2010.25045

Google Scholar

[6] M. D. Ariani, A. Matsuura, I. Hirata, T. Kubo, K. Kato, Y. Akagawa, New Development of Carbonate Apatite-Chitosan Scaffold Based On Lyophilization Technique for Bone Tissue Engineering, Dental Material Journals 32 (2013) 317–325.

DOI: 10.4012/dmj.2012-257

Google Scholar

[7] D. Suárez-González, K. Barnhart, E. Saito, R. Vanderby Jr, S. Hollister, W.L. Murphy, Controlled nucleation of hydroxyapatite on alginate scaffolds for stem cell-based bone tissue engineering J Biomed Mater Res A. 95 (2010): 222–234.

DOI: 10.1002/jbm.a.32833

Google Scholar

[8] C. M. Murphy, M. G. Haugh, F. J. O'Brien, The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering, Biomaterials 31 (2010) 461–466.

DOI: 10.1016/j.biomaterials.2009.09.063

Google Scholar

[9] S. Gil, J. Mano, Magnetic composite biomaterials for tissue engineering, Biomater. Sci. 2 (2014) 812.

DOI: 10.1039/c4bm00041b

Google Scholar

[10] F. M. Lievit, M. Zhang, Surface Engineering of Iron Oxide Nanoparticles, for Targeted Cancer Therapy, Acc. Chem. Res. 44 (2011) 853–862.

DOI: 10.1021/ar2000277

Google Scholar

[11] H. H. Beherei, M. S. Abdel-Aal, A. A. Shaltout, A. El-Magharby, Bio-physiochemical characterization of anticancer nano-ceramic polymer scaffold for bone grafting, Der Pharma Chemica 4 (2012) 544-551.

Google Scholar

[12] Md. S Islam, Y. Kusumoto,  Md. Abdulla-Al-Mamun,  Y. Horie and   H. Manaka.   Enhancement of cumulative photoirradiated and ac magnetic-field induced cancer (HeLa) cell killing efficacy of mixed α and γ-Fe2O3 magnetic nanoparticles, New J. Chem. 36 (2012).

DOI: 10.1039/c2nj40029d

Google Scholar

[13] Ch. Mamatha, M. Krishnaiah, C. S. Prakash, K. G. Rewatkar, B. M. Nagabhushana, Structural, Electrical and Magnetic properties of Aluminum Substituted Nanocalcium Hexaferrites, International Journal of ChemTech Research, 6 (2014) 2165-2167.

Google Scholar

[14] G. Baldi, G. Lorenzi, C. Ravagli, Hyperthermic effect of magnetic nanoparticles under electromagnetic field, Processing and Applications of Ceramics 3 (2009) 103–109.

DOI: 10.2298/pac0902103b

Google Scholar