[1]
P. Zhang, C. Shao, X. Li, M. Zhang, X. Zhang, Y. Sun and Y. Liu, In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: A three-way synergistic heterostructure with enhanced photocatalytic activity, Journal of Hazardous Materials 237–238 (2012).
DOI: 10.1016/j.jhazmat.2012.08.054
Google Scholar
[2]
J. Wang, J. Li, Y. Xie, C. Li, G. Han, L. Zhang, R. Xu and X. Zhang, Investigation on solar photocatalytic degradation of various dyes in the presence of Er3 þ: YAlO3/ZnO–TiO2 composite, Journal of Environmental Management 91 (2010) 677–684.
DOI: 10.1016/j.jenvman.2009.09.031
Google Scholar
[3]
Y. Wang, S. Zhu, X. Chen, Y. Tang and Y. Jiang, One-step template-free fabrication of mesoporous ZnO/TiO2 hollow microspheres with enhanced photocatalytic activity, Applied Surface Science 307(2014) 263–271.
DOI: 10.1016/j.apsusc.2014.04.023
Google Scholar
[4]
A. Ferrari-Lima, R. d. Souza, S. Mendes, R. Marques and M. Gimenes, Photodegradation of benzene, toluene and xylenes under visible light applying N-doped mixed TiO2 and ZnO catalysts, Catalysis Today (2014).
DOI: 10.1016/j.cattod.2014.03.042
Google Scholar
[5]
K. H. Leong, P. Monash, S. Ibrahim and P. Saravanan, Solar photocatalytic activity of anatase TiO2 nanocrystals synthesized by non-hydrolitic sol–gel method, Solar Energy 101 (2014) 321-332.
DOI: 10.1016/j.solener.2014.01.006
Google Scholar
[6]
K. Hayat, M. Gondal, M. M. Khaled, S. Ahmed and A. M. Shemsi, Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water Applied Catalysis A: General 393 (2011)122-129.
DOI: 10.1016/j.apcata.2010.11.032
Google Scholar
[7]
A. M. Hussein and R. V. Shende, Enhanced hydrogen generation using ZrO2- modified coupled ZnO/TiO2 nanocomposites in the absence of noble metal co-catalyst, International Journal of Energy 39 (2014) 5557-5568.
DOI: 10.1016/j.ijhydene.2014.01.149
Google Scholar
[8]
S. Wei, Y. Chen, Y. Ma and Z. Shao, Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance, Journal of Molecular Catalysis A: Chemical 331 (2010) 112-116.
DOI: 10.1016/j.molcata.2010.08.011
Google Scholar
[9]
C. -C. Hu, J. -N. Nian and H. Teng, Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3, Solar Energy Materials & Solar Cells 92 (2008) 1071-1076.
DOI: 10.1016/j.solmat.2008.03.012
Google Scholar
[10]
P. Khemthong, P. Photai and N. Grisdanurak, Structural properties of CuO/TiO2 nanorod in relation to their catalytic activity for simultaneous hydrogen production under solar light, International Journal of Hydrogen Energy, 38 (2013) 15992-16001.
DOI: 10.1016/j.ijhydene.2013.10.065
Google Scholar
[11]
B. Li and Y. Wang, Facile synthesis and photocatalytic activity of ZnO–CuO nanocomposite, Superlattices and Microstructures 47(2010) 615-623.
DOI: 10.1016/j.spmi.2010.02.005
Google Scholar
[12]
R. Yang, L. Yang, T. Tao, F. Ma, M. Xu and Z. Zhang, Contrastive study of structure and photocatalytic performance with three-dimensionally ordered macroporous CuO–TiO2 and CuO/TiO2, Applied Surface Science 288 (2014) 363–368.
DOI: 10.1016/j.apsusc.2013.10.033
Google Scholar
[13]
W. -T. Chen, V. Jovic, D. Sun-waterhouse, H. Idriss and G. I. Waterhouse, The role of CuO in promoting photocatalytic hydrogen production over TiO2, International Journal of Hydrogen Energy 38 (2013) 15036-15048.
DOI: 10.1016/j.ijhydene.2013.09.101
Google Scholar
[14]
C. Yang, X. Cao, S. Wang, L. Zhang, F. Xiao, X. Su and J. Wang, Complex-directed hybridization of CuO/ZnO nanostructures and their gas sensing and photocatalytic properties, Ceramics International (2014).
DOI: 10.1016/j.ceramint.2014.09.120
Google Scholar
[15]
S. Xu and D. Sun, Significant improvement of photocatalytic hydrogen generation rate over TiO2 with deposited CuO, International Journal of Hydrogen Energy 34 (2009) 6096–6104.
DOI: 10.1016/j.ijhydene.2009.05.119
Google Scholar
[16]
R. Saleh and N. F. Djaja, Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light, Spectrochimica Acta Part A: Molecular and Biomolekular Spectroscopy 130 (2014) 581-590.
DOI: 10.1016/j.saa.2014.03.089
Google Scholar
[17]
R. Saleh and N. F. Djaja, UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles, Superlattices and Microstructures 74 (2014) 217-233.
DOI: 10.1016/j.spmi.2014.06.013
Google Scholar