Synthesis, Characterization and Photocatalytic Performance of ZnO/TiO2 and ZnO/TiO2/CuO Nanocomposite

Article Preview

Abstract:

In the present study, an attempt was made to synthesize ZnO/TiO2 and ZnO/TiO2/CuO nanocomposites as photocatalyst for degradation of organic pollutant (methylene blue) in aqueous solution under UV and visible light irradiation. Characterization using X-ray diffraction, energy dispersive X-ray spectroscopy, field emission scanning microscope electron, diffuse reflectance spectroscopy analysis confirmed that all three components phase are present in the photocatalyst. The photodegradation of organic pollutant showed that with the incorporation of CuO content in ZnO/TiO2 nanocomposites increasing the photocatalytic performance in ultraviolet as well as visible region.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-72

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Zhang, C. Shao, X. Li, M. Zhang, X. Zhang, Y. Sun and Y. Liu, In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: A three-way synergistic heterostructure with enhanced photocatalytic activity, Journal of Hazardous Materials 237–238 (2012).

DOI: 10.1016/j.jhazmat.2012.08.054

Google Scholar

[2] J. Wang, J. Li, Y. Xie, C. Li, G. Han, L. Zhang, R. Xu and X. Zhang, Investigation on solar photocatalytic degradation of various dyes in the presence of Er3 þ: YAlO3/ZnO–TiO2 composite, Journal of Environmental Management 91 (2010) 677–684.

DOI: 10.1016/j.jenvman.2009.09.031

Google Scholar

[3] Y. Wang, S. Zhu, X. Chen, Y. Tang and Y. Jiang, One-step template-free fabrication of mesoporous ZnO/TiO2 hollow microspheres with enhanced photocatalytic activity, Applied Surface Science 307(2014) 263–271.

DOI: 10.1016/j.apsusc.2014.04.023

Google Scholar

[4] A. Ferrari-Lima, R. d. Souza, S. Mendes, R. Marques and M. Gimenes, Photodegradation of benzene, toluene and xylenes under visible light applying N-doped mixed TiO2 and ZnO catalysts, Catalysis Today (2014).

DOI: 10.1016/j.cattod.2014.03.042

Google Scholar

[5] K. H. Leong, P. Monash, S. Ibrahim and P. Saravanan, Solar photocatalytic activity of anatase TiO2 nanocrystals synthesized by non-hydrolitic sol–gel method, Solar Energy 101 (2014) 321-332.

DOI: 10.1016/j.solener.2014.01.006

Google Scholar

[6] K. Hayat, M. Gondal, M. M. Khaled, S. Ahmed and A. M. Shemsi, Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water Applied Catalysis A: General 393 (2011)122-129.

DOI: 10.1016/j.apcata.2010.11.032

Google Scholar

[7] A. M. Hussein and R. V. Shende, Enhanced hydrogen generation using ZrO2- modified coupled ZnO/TiO2 nanocomposites in the absence of noble metal co-catalyst, International Journal of Energy 39 (2014) 5557-5568.

DOI: 10.1016/j.ijhydene.2014.01.149

Google Scholar

[8] S. Wei, Y. Chen, Y. Ma and Z. Shao, Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance, Journal of Molecular Catalysis A: Chemical 331 (2010) 112-116.

DOI: 10.1016/j.molcata.2010.08.011

Google Scholar

[9] C. -C. Hu, J. -N. Nian and H. Teng, Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3, Solar Energy Materials & Solar Cells 92 (2008) 1071-1076.

DOI: 10.1016/j.solmat.2008.03.012

Google Scholar

[10] P. Khemthong, P. Photai and N. Grisdanurak, Structural properties of CuO/TiO2 nanorod in relation to their catalytic activity for simultaneous hydrogen production under solar light, International Journal of Hydrogen Energy, 38 (2013) 15992-16001.

DOI: 10.1016/j.ijhydene.2013.10.065

Google Scholar

[11] B. Li and Y. Wang, Facile synthesis and photocatalytic activity of ZnO–CuO nanocomposite, Superlattices and Microstructures 47(2010) 615-623.

DOI: 10.1016/j.spmi.2010.02.005

Google Scholar

[12] R. Yang, L. Yang, T. Tao, F. Ma, M. Xu and Z. Zhang, Contrastive study of structure and photocatalytic performance with three-dimensionally ordered macroporous CuO–TiO2 and CuO/TiO2, Applied Surface Science 288 (2014) 363–368.

DOI: 10.1016/j.apsusc.2013.10.033

Google Scholar

[13] W. -T. Chen, V. Jovic, D. Sun-waterhouse, H. Idriss and G. I. Waterhouse, The role of CuO in promoting photocatalytic hydrogen production over TiO2, International Journal of Hydrogen Energy 38 (2013) 15036-15048.

DOI: 10.1016/j.ijhydene.2013.09.101

Google Scholar

[14] C. Yang, X. Cao, S. Wang, L. Zhang, F. Xiao, X. Su and J. Wang, Complex-directed hybridization of CuO/ZnO nanostructures and their gas sensing and photocatalytic properties, Ceramics International (2014).

DOI: 10.1016/j.ceramint.2014.09.120

Google Scholar

[15] S. Xu and D. Sun, Significant improvement of photocatalytic hydrogen generation rate over TiO2 with deposited CuO, International Journal of Hydrogen Energy 34 (2009) 6096–6104.

DOI: 10.1016/j.ijhydene.2009.05.119

Google Scholar

[16] R. Saleh and N. F. Djaja, Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light, Spectrochimica Acta Part A: Molecular and Biomolekular Spectroscopy 130 (2014) 581-590.

DOI: 10.1016/j.saa.2014.03.089

Google Scholar

[17] R. Saleh and N. F. Djaja, UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles, Superlattices and Microstructures 74 (2014) 217-233.

DOI: 10.1016/j.spmi.2014.06.013

Google Scholar