[1]
X. Qin, G. Shao, L. Zhao. The effect of surfactant on the structure and properties of ZnO films prepared by electrodeposition. Mat. Sci. Eng. B 177 (2012) 1678– 1681.
DOI: 10.1016/j.mseb.2012.08.012
Google Scholar
[2]
S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar. Strategies of making TiO2 and ZnO visible light active. J. Hazard. Mater. 170 (2009) 560 – 569.
DOI: 10.1016/j.jhazmat.2009.05.064
Google Scholar
[3]
S. Ekamabram, Y. Ikubo, A. Kudo. Combustion synthesis and photocatalytic properties of transition metal-incorporated ZnO. J. All. Comp. 433 (2007) 237 – 240.
Google Scholar
[4]
C. Wang, H. Shi, Y. Li. Synthesis and characteristics of natural zeolite supported Fe3+-TiO2 photocatalysts. Appl. Surf. Sci. 257 (2011) 6873-6877.
DOI: 10.1016/j.apsusc.2011.03.021
Google Scholar
[5]
A. Chrissanthopoulos, F.C. Kyriazis, V. Nikolakis, I.G. Giannakopoulos, V. Dracopoulos, S. Baskoutas, N. Bouropoulosih , S.N. Yannopoulos. ZnO/zeolite hybrid nanostructures: synthesis, structure, optical properties, and simulation. Thin Sol. Films 555 (2014).
DOI: 10.1016/j.tsf.2013.05.157
Google Scholar
[6]
N. Sapawe, A.A. Jalil, S. Triwahyonob, R.N.R.A. Saha, N.W.C. Jusoha, N.H.H. Hairomc, J. Efendi. Electrochemical strategy for grown ZnO nanoparticles deposited onto HY zeolite with enhanced photodecolorization of methylene blue: Effect of the formation of Si-O-Zn bonds. Appl. Catal. A 456 (2013).
DOI: 10.1016/j.apcata.2013.02.025
Google Scholar
[7]
S. Anandan and M. Yoon. Photocatalytic activities of the nano-sized TiO2-supported Y-zeolites. J. Photochem. Photobio. C 4 (2003) 5–18.
Google Scholar
[8]
E. C. Ilinoiu, R. Pode, F. Manea, L. A Colar, A. Jakab, C. Orha, C. Rati, C. Lazau, P. Sfarloaga. Photocatalytic activity of a nitrogen-doped TiO 2 modified zeolite in the degradation of Reactive Yellow 125 azo dye. J. Tai. Inst. Chem. Eng. 44 (2013).
DOI: 10.1016/j.jtice.2012.09.006
Google Scholar
[9]
H.R. Pouretedala, A. Norozi, M.H. Keshavarz, A. Sekhmnani. Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes. J. Hazard. Mater. 162 (2009) 674–681.
DOI: 10.1016/j.jhazmat.2008.05.128
Google Scholar
[10]
M.A. Barakat, H. Schaeffer, G. Hayes, S. Ismat-Shah. Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. Appl. Catal. B: Environ. 57 (2004) 23–30.
DOI: 10.1016/j.apcatb.2004.10.001
Google Scholar
[11]
K. Venkateswarlu, A. Chandra Bose, N. Rameshbabu. X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis. Physica B 405 (2010) 4256 – 4261.
DOI: 10.1016/j.physb.2010.07.020
Google Scholar
[12]
J. Xie, Y. Lie, W. Zhao, Y. Wei. Pow. Tech. 207 (2009): 140 – 144.
Google Scholar
[13]
A.H. Alwasha, A.Z. Abdullaha, N. Ismail. Zeolite Y encapsulated with Fe-TiO2 for ultrasound-assisted degradation of amaranth dye in water. J. Hazard. Mater. 233– 234 (2012) 184– 193.
DOI: 10.1016/j.jhazmat.2012.07.021
Google Scholar
[14]
Z. Fereshteha, M. R. Loghman-Estarkia, R. S. Razavib, M. Taheranc. Mat. Sci. Sem. Pro. 16 (2013) 547–553.
Google Scholar
[15]
B. Babu, Ch. Rama Krishna, Ch. Venkata Reddy, V. Pushpa Manjari, R.V.S.S.N. Ravikumar. Synthesis and structural characterization of Co2+ ions doped ZnO nanopowders by solid state reaction through sonication. Spectrochimica Acta A 109 (2013).
DOI: 10.1016/j.saa.2013.02.032
Google Scholar
[16]
H. Fuks, S.M. Kaczmarek, M. Bosacka. A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization. Adv. Mat. Sci. 23 (2010) 530-537.
Google Scholar
[17]
A. Nezamzadeh-Ejieh and M. Kharimi-Shamsabadi. Decolorization of a binary azo dyes mixture using CuO incorporated nanozeolite-X as a heterogeneous catalyst and solar irradiation. Chem. Eng. J. 228 (2013) 631–641.
DOI: 10.1016/j.cej.2013.05.035
Google Scholar
[18]
S. Kongwudthiti, P. Praserthdam, W. Tanakulrungsank, M. Inoue. The influence of Si–O–Zr bonds on the crystal-growth inhibition of zirconia prepared by the glycothermal method. J. Mater. Process. Tech. 136 (2003) 186–189.
DOI: 10.1016/s0924-0136(03)00157-2
Google Scholar
[19]
S. K. Sharma, A.I. Inamdar, Hyunsik Im, B.G. Kim, P.S. Patil. Morphology dependent dye-sensitized solar cell properties of nanocrystalline zinc oxide thin films. J. Alloys Comp. 509 (2011) 2127 – 2131.
DOI: 10.1016/j.jallcom.2010.10.163
Google Scholar
[20]
R. Saleh and N.F. Djaja. Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 130 (2014) 581–590.
DOI: 10.1016/j.saa.2014.03.089
Google Scholar
[21]
L. G. Devi, N. Kottam, B. N. Murthy, S. G. Kumar. Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light. J. Mol. Catal. A: Chem. 328 (2010).
DOI: 10.1016/j.molcata.2010.05.021
Google Scholar
[22]
Ji-Zhou Kong, Ai-Dong Li, Hai-Fa Zhai, You-Pin Gong, Hui Li, Wu Di. Preparation, characterization of the Ta-doped ZnO nanoparticles and their photocatalytic activity under visible-light illumination. J. Solid State Chem. 182 (2009) 2061–(2067).
DOI: 10.1016/j.jssc.2009.03.022
Google Scholar
[23]
I. K. Konstantinou, Triantafyllos A. Albanis. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations. Appl. Catal. B 49 (2004) 1–14.
DOI: 10.1016/j.apcatb.2003.11.010
Google Scholar
[24]
R. Chauhan, A. i Kumar, R.P. Chaudhary. Synthesis and characterization of copper doped ZnO nanoparticles. J. Chem. Pharm. Res. 4 (2011) 178-183.
Google Scholar
[25]
M. Nikazar, K. Gholivand, K. Mahanpoor. Photocatalytic degradation of azo dye Acid Red 114 in water with TiO2 supported on clinoptilolite as a catalys. Desalination 219 (2008) 293–300.
DOI: 10.1016/j.desal.2007.02.035
Google Scholar