Photocatalytic Activity of Zeolite Supported Transition Metal-(Co2+ and Cr2+) Doped ZnO: Comparative Study

Article Preview

Abstract:

Transition metal ions (Co and Cr) doped ZnO nanoparticles supported on natural zeolite were synthesized using co-precipitation method. The synthesized samples were characterized by means of X-ray diffraction, energy dispersive X-ray, Fourier-transform infrared absorption, and UV-visible diffuse reflectance spectroscopy. The samples were further used as photocatalyst for degradation of methyl orange and methylene blue in aqueous solutions under UV light irradiation. The results showed that zeolite supported Cr-doped ZnO nanoparticles is more efficient compared with zeolite supported Co-doped ZnO nanoparticles. It is also revealed that zeolite supported samples possessed higher photocatalytic efficiency compared to bare samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-48

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Qin, G. Shao, L. Zhao. The effect of surfactant on the structure and properties of ZnO films prepared by electrodeposition. Mat. Sci. Eng. B 177 (2012) 1678– 1681.

DOI: 10.1016/j.mseb.2012.08.012

Google Scholar

[2] S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar. Strategies of making TiO2 and ZnO visible light active. J. Hazard. Mater. 170 (2009) 560 – 569.

DOI: 10.1016/j.jhazmat.2009.05.064

Google Scholar

[3] S. Ekamabram, Y. Ikubo, A. Kudo. Combustion synthesis and photocatalytic properties of transition metal-incorporated ZnO. J. All. Comp. 433 (2007) 237 – 240.

Google Scholar

[4] C. Wang, H. Shi, Y. Li. Synthesis and characteristics of natural zeolite supported Fe3+-TiO2 photocatalysts. Appl. Surf. Sci. 257 (2011) 6873-6877.

DOI: 10.1016/j.apsusc.2011.03.021

Google Scholar

[5] A. Chrissanthopoulos, F.C. Kyriazis, V. Nikolakis, I.G. Giannakopoulos, V. Dracopoulos, S. Baskoutas, N. Bouropoulosih , S.N. Yannopoulos. ZnO/zeolite hybrid nanostructures: synthesis, structure, optical properties, and simulation. Thin Sol. Films 555 (2014).

DOI: 10.1016/j.tsf.2013.05.157

Google Scholar

[6] N. Sapawe, A.A. Jalil, S. Triwahyonob, R.N.R.A. Saha, N.W.C. Jusoha, N.H.H. Hairomc, J. Efendi. Electrochemical strategy for grown ZnO nanoparticles deposited onto HY zeolite with enhanced photodecolorization of methylene blue: Effect of the formation of Si-O-Zn bonds. Appl. Catal. A 456 (2013).

DOI: 10.1016/j.apcata.2013.02.025

Google Scholar

[7] S. Anandan and M. Yoon. Photocatalytic activities of the nano-sized TiO2-supported Y-zeolites. J. Photochem. Photobio. C 4 (2003) 5–18.

Google Scholar

[8] E. C. Ilinoiu, R. Pode, F. Manea, L. A Colar, A. Jakab, C. Orha, C. Rati, C. Lazau, P. Sfarloaga. Photocatalytic activity of a nitrogen-doped TiO 2 modified zeolite in the degradation of Reactive Yellow 125 azo dye. J. Tai. Inst. Chem. Eng. 44 (2013).

DOI: 10.1016/j.jtice.2012.09.006

Google Scholar

[9] H.R. Pouretedala, A. Norozi, M.H. Keshavarz, A. Sekhmnani. Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes. J. Hazard. Mater. 162 (2009) 674–681.

DOI: 10.1016/j.jhazmat.2008.05.128

Google Scholar

[10] M.A. Barakat, H. Schaeffer, G. Hayes, S. Ismat-Shah. Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. Appl. Catal. B: Environ. 57 (2004) 23–30.

DOI: 10.1016/j.apcatb.2004.10.001

Google Scholar

[11] K. Venkateswarlu, A. Chandra Bose, N. Rameshbabu. X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis. Physica B 405 (2010) 4256 – 4261.

DOI: 10.1016/j.physb.2010.07.020

Google Scholar

[12] J. Xie, Y. Lie, W. Zhao, Y. Wei. Pow. Tech. 207 (2009): 140 – 144.

Google Scholar

[13] A.H. Alwasha, A.Z. Abdullaha, N. Ismail. Zeolite Y encapsulated with Fe-TiO2 for ultrasound-assisted degradation of amaranth dye in water. J. Hazard. Mater. 233– 234 (2012) 184– 193.

DOI: 10.1016/j.jhazmat.2012.07.021

Google Scholar

[14] Z. Fereshteha, M. R. Loghman-Estarkia, R. S. Razavib, M. Taheranc. Mat. Sci. Sem. Pro. 16 (2013) 547–553.

Google Scholar

[15] B. Babu, Ch. Rama Krishna, Ch. Venkata Reddy, V. Pushpa Manjari, R.V.S.S.N. Ravikumar. Synthesis and structural characterization of Co2+ ions doped ZnO nanopowders by solid state reaction through sonication. Spectrochimica Acta A 109 (2013).

DOI: 10.1016/j.saa.2013.02.032

Google Scholar

[16] H. Fuks, S.M. Kaczmarek, M. Bosacka. A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization. Adv. Mat. Sci. 23 (2010) 530-537.

Google Scholar

[17] A. Nezamzadeh-Ejieh and M. Kharimi-Shamsabadi. Decolorization of a binary azo dyes mixture using CuO incorporated nanozeolite-X as a heterogeneous catalyst and solar irradiation. Chem. Eng. J. 228 (2013) 631–641.

DOI: 10.1016/j.cej.2013.05.035

Google Scholar

[18] S. Kongwudthiti, P. Praserthdam, W. Tanakulrungsank, M. Inoue. The influence of Si–O–Zr bonds on the crystal-growth inhibition of zirconia prepared by the glycothermal method. J. Mater. Process. Tech. 136 (2003) 186–189.

DOI: 10.1016/s0924-0136(03)00157-2

Google Scholar

[19] S. K. Sharma, A.I. Inamdar, Hyunsik Im, B.G. Kim, P.S. Patil. Morphology dependent dye-sensitized solar cell properties of nanocrystalline zinc oxide thin films. J. Alloys Comp. 509 (2011) 2127 – 2131.

DOI: 10.1016/j.jallcom.2010.10.163

Google Scholar

[20] R. Saleh and N.F. Djaja. Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 130 (2014) 581–590.

DOI: 10.1016/j.saa.2014.03.089

Google Scholar

[21] L. G. Devi, N. Kottam, B. N. Murthy, S. G. Kumar. Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light. J. Mol. Catal. A: Chem. 328 (2010).

DOI: 10.1016/j.molcata.2010.05.021

Google Scholar

[22] Ji-Zhou Kong, Ai-Dong Li, Hai-Fa Zhai, You-Pin Gong, Hui Li, Wu Di. Preparation, characterization of the Ta-doped ZnO nanoparticles and their photocatalytic activity under visible-light illumination. J. Solid State Chem. 182 (2009) 2061–(2067).

DOI: 10.1016/j.jssc.2009.03.022

Google Scholar

[23] I. K. Konstantinou, Triantafyllos A. Albanis. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations. Appl. Catal. B 49 (2004) 1–14.

DOI: 10.1016/j.apcatb.2003.11.010

Google Scholar

[24] R. Chauhan, A. i Kumar, R.P. Chaudhary. Synthesis and characterization of copper doped ZnO nanoparticles. J. Chem. Pharm. Res. 4 (2011) 178-183.

Google Scholar

[25] M. Nikazar, K. Gholivand, K. Mahanpoor. Photocatalytic degradation of azo dye Acid Red 114 in water with TiO2 supported on clinoptilolite as a catalys. Desalination 219 (2008) 293–300.

DOI: 10.1016/j.desal.2007.02.035

Google Scholar