Comparative Study on Photocatalytic Performance of (La,Fe) and (Ce,Fe)-Codoped ZnO Nanoparticles

Article Preview

Abstract:

The present study evaluates the photocatalytic degradation of congo red as a model of organic pollutant over LaFe- and CeFe-codoped ZnO nanoparticles under UV light irradiation. Both photocatalysts were synthesized using co-precipitation method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, diffuse reflectance spectroscopy. The photodegradation efficiency of congo red using two 20W UV lamp was higher for LaFe-codoped ZnO nanoparticles compared with CeFe-codoped ZnO nanoparticles. Photocatalytic mechanism was investigated by measuring the photocatalytic degradation rate in the presence of ammonium oxalate, natrium sulfate, tert-butyl alcohol as photogenerated holes, photogenerated electrons and hydroxyl radical species scavenger. The results revealed that electrons are the main species in the photocatalytic process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-36

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, Journal of Hazardous Materials 156 (2008)194-200.

DOI: 10.1016/j.jhazmat.2007.12.033

Google Scholar

[2] C. Karunakaran, V. Rajeswari, P. Gomathisankar, Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag-ZnO and ZnO, Solid State Science 13 (2011) 923-928.

DOI: 10.1016/j.solidstatesciences.2011.02.016

Google Scholar

[3] Q. Xiao, C. Yao, Preparation and visible light photocatalytic activity of Zn1− x FexO nanocrystalline, Materials Chemistry and Physics 130 (2011) 5-9.

DOI: 10.1016/j.matchemphys.2011.07.012

Google Scholar

[4] M. Fu, Y. Li, S. Fu, P. Lu, J. Liu, F. Dong, Sol–gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles, Applied Surface Science 258 (2011) 1587-1591.

DOI: 10.1016/j.apsusc.2011.10.003

Google Scholar

[5] M. S. Hassan, T. Amna, O. B. Yang, H. C. Kim, M. S. Khil, TiO2 nanofibers doped with rare earth elements and their photocatalytic activity, Ceramics International 38 (2012) 5925 – 5930.

DOI: 10.1016/j.ceramint.2012.04.043

Google Scholar

[6] K. Thongsuriwong, P. Amornpitoksuk, S. Suwanboon, Photocatalytic and antibacterial activities of Ag-doped ZnO thin films prepared by a sol–gel dip-coating method, Journal of Sol-Gel Science Technology 62 (2012) 304 – 312.

DOI: 10.1007/s10971-012-2725-7

Google Scholar

[7] R. Chauhan, A. Kumar, R. P. Chaudhary, Photocatalytic studies of silver doped ZnO nanoparticles synthesized by chemical precipitation method, Journal of Sol-Gel Science Technology 63 (2012) 546 - 553.

DOI: 10.1007/s10971-012-2818-3

Google Scholar

[8] R. Chauhan, A. Kumar, R.P. Chaudhary, Structural and photocatalytic studies of Mn doped TiO2 nanoparticles, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 98 (2012) 256–264.

DOI: 10.1016/j.saa.2012.08.009

Google Scholar

[9] R. Saleh and N. F. Djaja, UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles, Superlattices and Microstructures 74 (2014) 217-233.

DOI: 10.1016/j.spmi.2014.06.013

Google Scholar

[10] M. M. Ba-Abbad, A. A. H. Kadhum, A. B. Mohamad, M. S. Takriff, K. Sopian, Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticle prepared via sol–gel technique, Chemosphere 91 (2013) 1604 – 1611.

DOI: 10.1016/j.chemosphere.2012.12.055

Google Scholar

[11] S. Anandan, A. Vinu, T. Mori, N. Gokulakrishnan, P. Srinivasu, V. Murugesan, K. Ariga, Photocatalytic degradation of 2, 4, 6-trichlorophenol using lanthanum doped ZnO in aqueous suspension, Catalysis Communications 8 (2007) 1377–1382.

DOI: 10.1016/j.catcom.2006.12.001

Google Scholar

[12] C. J. Chang, C. Y. Lin, M. H. Hsu, Enhanced photocatalytic activity of Ce-doped ZnO nanorods under UV and visible light, Journal of the Taiwan Institute of Chemical Engineers 45 (2014) 1954-(1963).

DOI: 10.1016/j.jtice.2014.03.008

Google Scholar

[13] N. F. Djaja and R. Saleh, Characteristics and Photocatalytics Activities of Ce-Doped ZnO Nanoparticles, Materials Sciences and Applications 4 (2013) 145-152.

DOI: 10.4236/msa.2013.42017

Google Scholar

[14] R. Saleh, N. F. Djaja, S. P. Prakoso, The correlation between magnetic and structural properties of nanocrystalline transition metal-doped ZnO particles prepared by the co-precipitation method, Journal of Alloys and Compounds 546 (2013) 48–56.

DOI: 10.1016/j.jallcom.2012.08.056

Google Scholar

[15] J. A. Wibowo, N. F. Djaja, R. Saleh, Cu-and Ni-Doping effect on structure and magnetic properties of Fe-doped ZnO nanoparticles, Advances in Materials Physics and Chemistry 3 (2013) 48 - 57.

DOI: 10.4236/ampc.2013.31008

Google Scholar

[16] G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metallurgica 1 (1953) 22-31.

DOI: 10.1016/0001-6160(53)90006-6

Google Scholar

[17] B. Hapke, Theory of Reflectance and Emittance Spectroscopy, University Press, Cambridge, (1993).

Google Scholar

[18] J. Iqbal, X. F. Liu, H. C. Zhu, C. C. Pan, Y. Zhang, D. P. Yu, R. H. Yu, Trapping of Ce Electrons in Band Gap and Room Temperature Ferromagnetism of Ce4+ Doped ZnO Nanowires, Journal of Applied Physics 106 (2009) 83515.

DOI: 10.1063/1.3245325

Google Scholar

[19] S.H. Deng, M.Y. Duan, M. Xu, L. He, Effect of La doping on the electronic structure and optical properties of ZnO, Physica B: Condensed Matter 406 (2011) 2314-2318.

DOI: 10.1016/j.physb.2011.03.067

Google Scholar

[20] C. Aydin, M. S. A. El-sadek, K. Zheng, I.S. Yahia, F. Yakuphanoglu, Synthesis, diffused reflectance and electrical properties of nanocrystalline Fe-doped ZnO via sol–gel calcination technique, Optics & Laser Technology 48 (2013) 447–452.

DOI: 10.1016/j.optlastec.2012.11.004

Google Scholar

[21] J. Anghel, A. Thurber, D. A Tenne, C. B Hanna, and A. Punnoose, Correlation between saturation magnetization, bandgap, and lattice volume of transition metal (M= Cr, Mn, Fe, Co, or Ni) doped Zn1-xMxO nanoparticles, Journal of Applied Physics 107 (2010).

DOI: 10.1063/1.3360189

Google Scholar

[22] C. Wang, H. Shi, Y. Li, Synthesis and characteristics of natural zeolite supported Fe 3+-TiO 2 photocatalysts, Applied Surface Science 257 (2011) 6873-6877.

DOI: 10.1016/j.apsusc.2011.03.021

Google Scholar

[23] M.I. Litter, J.A. Navío, Photocatalytic properties of iron-doped titania semiconductors, Journal of Photochemistry and Photobiology A: Chemistry 98 (1996) 171-181.

DOI: 10.1016/1010-6030(96)04343-2

Google Scholar

[24] R. Saleh, N. F. Djaja, Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 130 (2014) 581-590.

DOI: 10.1016/j.saa.2014.03.089

Google Scholar

[25] L. G. Devi, N. Kottam, B. N. Murthy, S. G. Kumar, Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn 2+ doped polycrystalline titania for the degradation of aniline blue under UV/solar light, Journal of Molecular Catalysis A: Chemical 328 (2010).

DOI: 10.1016/j.molcata.2010.05.021

Google Scholar

[26] U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review, Journal of Hazardous Materials 170 (2009) 520–529.

DOI: 10.1016/j.jhazmat.2009.05.039

Google Scholar

[27] A. H. Alwash, A. Z. Abdullah, N. Ismail, Zeolite Y Encapsulated with Fe-TiO2 for Ultrasound-Assisted Degradation of Amaranth Dye in Water, Journal of Hazardous Materials 233 – 234 (2012) 184 – 193.

DOI: 10.1016/j.jhazmat.2012.07.021

Google Scholar

[28] C. Zhu, L. Wang, L. Kong, X. Yang, L. Wang, S. Zheng, F. Chen, F. MaiZhi, H. Zong, Photocatalytic degradation of AZO dyes by supported TiO2 + UV in aqueous solution, Chemosphere 41 (2000) 303-309.

DOI: 10.1016/s0045-6535(99)00487-7

Google Scholar

[29] I. K. Konstantinou, T. A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review, Applied Catalysis B: Environmental 49 (2004) 1–14.

DOI: 10.1016/j.apcatb.2003.11.010

Google Scholar

[30] J. Oguma, Y. Kakuma, S. Murayama, Y. Nosaka, Effects of silica coating on photocatalytic reactions of anatase titanium dioxide studied by quantitative detection of reactive oxygen species, Applied Catalysis B: Environmental 129 (2013) 282-286.

DOI: 10.1016/j.apcatb.2012.09.034

Google Scholar