[1]
A. Roychowdhury, S.P. Pati, A.K. Mishra, S. Kumar, D. Das, Magnetically addressable fluorescent Fe3O4/ZnO nanocomposites: Structural, optical and magnetization studies, J. Phys. Chem. Solids 74 (2013) 811–818.
DOI: 10.1016/j.jpcs.2013.01.012
Google Scholar
[2]
R.Y. Hong, S.Z. Zhang, G.Q. Di, H.Z. Li, Y. Zheng, J. Ding D.G. Wei, Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles , Mater. Res. Bull. 43 (2008) 2457–2468.
DOI: 10.1016/j.materresbull.2007.07.035
Google Scholar
[3]
J. Sui, J. Li, Z. Li, W. Cai, Synthesis and characterization of one-dimensional magnetic photocatalytic CNTs/Fe3O4–ZnO nanohybrids, Mater . Chem. Phys. 134 (2012) 229–234.
DOI: 10.1016/j.matchemphys.2012.02.057
Google Scholar
[4]
P. Ma,W. Jiang, F. Wang, F. Li, P. Shen, M. Chen, Y. Wang, J. Liu, P. Li, Synthesis and photocatalytic property of Fe3O4@TiO2 core/shell nanoparticles supported by reduced graphene oxide sheets, J. Alloys Compd. 578 (2013) 501–506.
DOI: 10.1016/j.jallcom.2013.07.026
Google Scholar
[5]
C. Lin, J. M Ho, Structural analysis and catalytic activity of Fe3O4 nanoparticles prepared by a facile co-precipitation method in a rotating packed bed, Ceram. Int. 40 (2014) 10275–10282.
DOI: 10.1016/j.ceramint.2014.02.119
Google Scholar
[6]
L. Qianga, T. Yang, Zhanfeng. Wanga, X. Chen, X. Cui, Molecular dynamics simulations of the interaction between Fe3O4 and biocompatible polymer, Colloids Surf., A 456 (2014) 62–66.
DOI: 10.1016/j.colsurfa.2014.04.058
Google Scholar
[7]
J. Xia, A. Wang, X. Liu, Z. Su, Preparation and characterization of bifunctional, Fe3O4/ZnO nanocomposites and their use as photocatalysts, Appl. Surf. Sci. 257 (2011) 9724– 9732.
DOI: 10.1016/j.apsusc.2011.05.114
Google Scholar
[8]
X. Feng, H. Guo, K. Patel, H. Zhou, X. Lou, High performance, recoverable Fe3O4ZnO nanoparticles for enhanced photocatalytic degradation of phenol, Chem. Eng. J. 244 (2014) 327–334.
DOI: 10.1016/j.cej.2014.01.075
Google Scholar
[9]
B.M. Rajbongshi, A. Ramchiary, SK Samdarshi, Influence of N-doping on photocatalytic activity of ZnO nanoparticles under visible light irradiation, Mater. Lett. 134 (2014) 111–114.
DOI: 10.1016/j.matlet.2014.07.073
Google Scholar
[10]
R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, A. Stephen, Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination, Mater. Sci. Eng. C 33 (2013) 91–98.
DOI: 10.1016/j.msec.2012.08.011
Google Scholar
[11]
B. Li, Y. Wang, Facile synthesis and photocatalytic activity of ZnO–CuO nanocomposite, Superlattices Microstruct. 47 (2010) 615–623.
DOI: 10.1016/j.spmi.2010.02.005
Google Scholar
[12]
S. Srivastava, R. Sinha, D. Roy, Toxicological effects of malachite green, Aquat. Toxicol. 66 (2004) 319–329.
DOI: 10.1016/j.aquatox.2003.09.008
Google Scholar
[13]
L. Saikia, D. Bhuyan, M. Saikia, B. Malakar, D.K. Dutta, P. Sengupta, Photocatalytic performance of ZnO nanomaterials for self-sensitized degradation of malachite green dye under solar light, Appl. Catal., B 490 (2015) 42-49.
DOI: 10.1016/j.apcata.2014.10.053
Google Scholar
[14]
M.A. Ahmed, A.A. EL-Khawlani, Enhancement of the crystal size and magnetic properties of Mg-substituted Co ferrite, J. Magn. Magn. Mater. 321 (2009) 1959–(1963).
DOI: 10.1016/j.jmmm.2008.12.021
Google Scholar
[15]
B. Hapke, Theory of Reflectance and Emittance Spectroscopy, University Press, Cambridge, (1993).
Google Scholar