Comparative Study of Photocatalytic Activity of Ni-Doped ZnO and Zeolite Supported Ni-Doped ZnO Prepared by Co-Precipitation Method

Article Preview

Abstract:

The present study compares the photocatalytic degradation of methylene blue in the presence of natural zeolite supported Ni-doped ZnO and bare Ni-doped ZnO nanoparticles. The photocatalyst was prepared by co-precipitation method and the photocatalytic activity of the photocatalyst was investigated under UV light irradiation. The results showed that the photocatalytic efficiency of zeolite supported Ni-doped ZnO nanoparticles is better than that of bare Ni-doped ZnO nanoparticles. The influence of experimental parameters on the photodegradation of methylene blue was studied and it was observed that photocatalytic activity varied with pH, initial methylene blue concentration and the amount of photocatalyst. The scavenger technique shows that electron plays an important role in the bare Ni-doped ZnO, while in zeolite supported Ni-doped ZnO, OH is the prominent active species.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-30

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Shamshi Hassan, Touseef Amna, O-Bong Yang, Hyun-Chel Kim, Myung-SeobKhil. TiO2 nanofibers doped with rare earth elements and their photocatalytic activity. Ceram. Int. 38 (2012) 5925–5930.

DOI: 10.1016/j.ceramint.2012.04.043

Google Scholar

[2] S. Anandan, A. Vinu, T. Mori, N. Gokulakrishnan, P. Srinivasu, V. Murugesan, K. Ariga. Photocatalytic degradation of 2, 4, 6-trichlorophenol using lanthanum doped ZnO in aqueous suspension. Catal. Commun. 8 (2007) 1377–1382.

DOI: 10.1016/j.catcom.2006.12.001

Google Scholar

[3] K. Thongsuriwong, P. Amornpitoksuk, S. Suwanboon. Photocatalytic and antibacterial activities of Ag-doped by a sol-gel dip-coating method. J. Sol–Gel Sci. Technol. 62 (2012) 304–312.

DOI: 10.1007/s10971-012-2725-7

Google Scholar

[4] Umar Ibrahim Gaya, Abdul Halim Abdullah. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problemsJ. Photochem. Photobiol. C: Photochem. Rev. 9 (2008) 1–12.

DOI: 10.1016/j.jphotochemrev.2007.12.003

Google Scholar

[5] Ruby Chauhan, Ashavani Kumar, Ram Pal Chaudhary, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 98 (2012) 256–264.

Google Scholar

[6] Sh. Sohrabnezhad, M.A. Zanjanchi, M. Razavi. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite under visible light. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 130 (2014) 129–135.

DOI: 10.1016/j.saa.2014.02.188

Google Scholar

[7] X. Zhao, G. Lu, G. Millar. Review advances in mesoporous molecular sieve MCM-41. J. Porous Mater. 3 (1996) 61–66.

Google Scholar

[8] R.J. Tayade, R.G. Kulkarni, R.V. Jasra. Enhanced photocatalytic activity of TiO2-coated NaY and HY zeolites for the degradation of methylene blue in waterInd. Eng. Chem. Res. 46 (2007) 369–376.

DOI: 10.1021/ie060641o

Google Scholar

[9] R. Salma, F. Ghribi, A. Houas, C. Barthou, L. El Mir. Visible photocatalytic properties of vanadium doped zinc oxide aerogel nanopowder. Thin Sol. Films 519 (2011) 5792-5795.

DOI: 10.1016/j.tsf.2010.12.197

Google Scholar

[10] R. Elilarasi and G. Chandrasekaran. Structural, optical and magnetic properties of nanoparticles of ZnO: Ni—DMS prepared by sol–gel method. Mat. Chem. Phys. 123 (2010) 450–455.

DOI: 10.1016/j.matchemphys.2010.04.039

Google Scholar

[11] Z. Fereshteha, M. R. Loghman-Estarkia, R. S. Razavib, M. Taheranc. Mat. Sci. Sem. Pro. 16 (2013) 547–553.

Google Scholar

[12] A. Nezamzadeh-Ejieh and M. Kharimi-Shamsabadi. Decolorization of a binary azo dyes mixture using CuO incorporated nanozeolite-X as a heterogeneous catalyst and solar irradiation. Chem. Eng. J. 228 (2013) 631–641.

DOI: 10.1016/j.cej.2013.05.035

Google Scholar

[13] N. F. Djaja, D. A. Montja, R. Saleh. The Effect of Co Incorporation into ZnO Nanoparticles. Adv. Mat. Phy. Chem. 3 (2013) 33–41.

DOI: 10.4236/ampc.2013.31006

Google Scholar

[14] M. M. Ba-Abbad, A. A. H. Kadhum, A. B. Mohamad , M. S. Takriff, K. Sopian. The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol–gel technique.J. All. Comp. 550 (2013) 63-70.

DOI: 10.1016/j.jallcom.2012.09.076

Google Scholar

[15] E.C. Ilinoiu, R. Pode, F. Manea, L.A. Colar, A. Jakab, C. Orha, C. Ratiu, C. Lazau, P. Sfarloaga. Photocatalytic activity of a nitrogen-doped TiO 2 modified zeolite in the degradation of Reactive Yellow 125 azo dye. J. Tai. Inst. Chem. Eng. 44 (2013).

DOI: 10.1016/j.jtice.2012.09.006

Google Scholar

[16] M. Muruganandham, N. Shobana, M. Swaminathan, Optimization of solar photocatalytic degradation conditions of Reactive Yellow 14 azo dye in aqueous TiO 2. J. Mol. Catal. A Chem. 2006 (246) 154–161.

DOI: 10.1016/j.molcata.2005.09.052

Google Scholar

[17] N. Sapawe, A.A. Jalil, S. Triwahyono, R.N.R.A. Sah, N.W.C. Jusoh, N.H.H. Hairom, J. Efendi. Electrochemical strategy for grown ZnO nanoparticles deposited onto HY zeolite with enhanced photodecolorization of methylene blue: Effect of the formation of Si O Zn bonds. Appl. Catal. A Gen. 456 (2013).

DOI: 10.1016/j.apcata.2013.02.025

Google Scholar

[18] Manouchehr Nikazara, Khodayar Gholivand, Kazem Mahanpoor. Photocatalytic degradation of azo Acid Red 114 in water with TiO2 supported on Clinoptilolite as a catalyst. Desalination 219 (2008) 293–300.

DOI: 10.1016/j.desal.2007.02.035

Google Scholar

[19] A. Nezamzadeh-Ejhieh and S. Hushmandrad. Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst. App. Catal. A General 388 (2010) 149-159.

DOI: 10.1016/j.apcata.2010.08.042

Google Scholar

[20] O. Carp, C.L. Huisman, A. Reller. Photoinduced reactivity of titanium dioxide. Prog. Sol. State Chem. 32 (2004) 33-177.

Google Scholar

[21] S. Anandan and M. Yoon. Photocatalytic activities of the nano-sized TiO2-supported Y-zeolites.J. Photochem. Photobio C: Photochem. Rev. 4 (2003) 5–18.

Google Scholar