[1]
P. Yuan, M. Fan, D. Yang, H. He, D. Liu, A. Yuan, J. Zhu, T. Chen, Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr (VI)] from aqueous solutions, Journal of Hazardous Materials 166 (2009) 821–829.
DOI: 10.1016/j.jhazmat.2008.11.083
Google Scholar
[2]
S. Asuha, X.G. Zhou, S. Zhao, Adsorption of methyl orange and Cr(VI) on mesoporous TiO2 prepared by hydrothermal method, Journal of Hazardous Materials181 (2010) 204–210.
DOI: 10.1016/j.jhazmat.2010.04.117
Google Scholar
[3]
N. Ballav, H.J. Choi, S.B. Mishra, A. Maity, Synthesis, characterization, of Fe3O4@glycine doped polypyrrole magnetic nanocomposite and their potential performance to remove toxic Cr (VI), Journal of Industrial and Engineering Chemistry 20 (2014).
DOI: 10.1016/j.jiec.2014.01.007
Google Scholar
[4]
Y. Lin, W. Cai, X. Tion, X. Liu, G. Wang, C. Liang, Polyacrylonitrile/ferrous chloride composite porous nanofibers and their strong Cr-removal performance, Journal of Materials Chemistry 21 (2011) 991–997.
DOI: 10.1039/c0jm02334e
Google Scholar
[5]
W. J. Koros, R. Mahajan, Pushing the limits on possibilities for large scale gas separation: which strategies?, Journal of Membrane Science 175 (2000) 181-196.
DOI: 10.1016/s0376-7388(00)00418-x
Google Scholar
[6]
S. H. Wu, J. L. Wu, S. Y. Jia, Q. W. Chang, H. T. Ren, Y. Liu, Cobalt (II) phthalocyanine-sensitized hollow Fe3O4@SiO2@TiO2 hierarchical nanostructures: Fabrication and enhanced photocatalytic properties, Applied Surface Science 287 (2013).
DOI: 10.1016/j.apsusc.2013.09.164
Google Scholar
[7]
Y. F. Zhang, L. G. Qiu, Y. P. Yuan, Y. J. Zhu, X. Jiang, J. D. Xiao, Magnetic Fe3O4@C/Cu and Fe3O4@CuO core–shell composites constructed from MOF-based materials and their photocatalytic properties under visible light, Applied Catalysis B: Enviromental 144 (2014).
DOI: 10.1016/j.apcatb.2013.08.019
Google Scholar
[8]
C. Karunakaran, S. SakthiRaadha, P. Gomathisankar, P. Vinayagamoorthy, Fe3O4/SnO2 nanocomposite: Hydrothermal and sonochemical synthesis, characterization, and visible-light photocatalytic and bactericidal activities, Powder Technology 246 (2013).
DOI: 10.1016/j.powtec.2013.06.011
Google Scholar
[9]
S. Shylesh, V. Schunemann, W.R. Thiel, A. Chemie, Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis, International Edition 49 (2010) 3428–3459.
DOI: 10.1002/anie.200905684
Google Scholar
[10]
O. E. G. Muñiz, G. G. Rosales, E. O. Regil, M. T. Olguin, A. C. Prieto, Synthesis, characterization and adsorptive properties of carbon with iron nanoparticles and iron carbide for the removal of As(V) from water, Journal of Environmental Management 114 (2013).
DOI: 10.1016/j.jenvman.2012.09.027
Google Scholar
[11]
Y. Xi, M. Mallavarapu, R. Naidu, Reduction and adsorption of Pb2+ in aqueous solution by nano-zero-valent iron—A SEM, TEM and XPS study, Materials Research Bulletin 45 (2010) 1361–1367.
DOI: 10.1016/j.materresbull.2010.06.046
Google Scholar
[12]
M. Iram, C. Guo, Y. Guan, A. Ishfaq, H. Liu, Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres, Journal of Hazardous Materials 181 (2010) 1039–1050.
DOI: 10.1016/j.jhazmat.2010.05.119
Google Scholar
[13]
A. Tiraferri, K. L. Chen, R. Sethi, M. Elimelech, Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum, Journal of Colloid and Interface Science 324 (2008) 71–79.
DOI: 10.1016/j.jcis.2008.04.064
Google Scholar
[14]
S. Shaker, S. Zafarian, C. H. S. Chakra, K. V. E. Rao, Preparation and characterization of magnetite nanoparticles by Sol-Gel method for water treatment, International Journal of Innovative Research in Science, Engineering and Technology 2 (2013).
Google Scholar
[15]
Y. Aparna, K. V. E. Rao, P. Srinivasa, Synthesis and characterization of CuO nano particles by novel sol-gel method, International Proceedings of Chemical, Biological and Environmental Engineering 48 (2012) 156-160.
Google Scholar
[16]
A. Hasanpour, M. Niyaifar, H. M. Pour, J. Amighian, A novel non-thermal process of TiO2-shell coating on Fe3O4-core nanoparticles, Journal of Physics and Chemistry of Solids 73 (2012) 1066–1070.
DOI: 10.1016/j.jpcs.2012.04.003
Google Scholar
[17]
P. Praveen, G. Viruthagiri, S. Mugundan, N. Shanmugam, Sol–gel synthesis and characterization of pure and manganese doped TiO 2 nanoparticles–A new NLO active material, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 120 (2014).
DOI: 10.1016/j.saa.2013.12.006
Google Scholar
[18]
M. Sahooli, S. Sabbaghi, R. Saboori, synthesis and characterization of mono sized CuO nanoparticles, Materials Letters 81 (2012) 169-172.
DOI: 10.1016/j.matlet.2012.04.148
Google Scholar
[19]
B. Hapke, Theory of Reflectance and Emittance Spectroscopy, University Press, Cambridge, (1993).
Google Scholar