Studies on Growth Mechanism of Annealed Graphite Powder and Gas-Sensor Applications

Article Preview

Abstract:

High quality micro sheet rhombohedral graphite crystals were synthesized by Hummer method using compounds of MWCNT, K2S2O8 and P2O5. The growth mechanisms were discussed by finite element simulation. The synthetic sheet rhombohedral graphite crystals showed a higher growth rate in radial direction than that in axial direction. Raman spectrum and Fourier transform infrared spectrum indicated that synthesized sheet rhombohedral Graphite had fewer crystal lattice distortions with no impurities. Finite element simulations indicated that the solvent metal convection field in the radial direction was stronger than that in the axial direction. As prepared graphite powder was annealed at 1350 oC to obtain diamond nanoparticles. The as-prepared products were exposed to formaldehyde gas.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

102-109

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.N. Crespilho, M.E. Ghica, V. Zucolotto, F.C. Nart, O.N. Oliveira, C.M.A. Brett, Electroanalysis (2007) 805–812, 19.

DOI: 10.1002/elan.200603775

Google Scholar

[2] J.R. Siqueira, C.F. Werner, M. Backer, A. Poghossian, V. Zucolotto, O.N. Oliveira, M.J. Schoning, J. Phys. Chem. C (2009) 14765–14770, 113.

Google Scholar

[3] B.C. Janegitz, L.H. Marcolino-Junior, S.P. Campana-Filho, R. C . Faria, O. Fatibello-Filho, Sens. Actuators B Chem. (2009) 260–266, 142.

DOI: 10.1016/j.snb.2009.08.033

Google Scholar

[4] B.C. Janegitz, R. Pauliukaite, M.E. Ghica, C.M.A. Brett, O. Fatibello-Filho, Sens. Act. B Chem. (2011) 411–417, 158.

Google Scholar

[5] B.C. Janegitz, L.C.S. Figueiredo-Filho, L.H. Marcolino-Junior, S.P.N. Souza, E.R. Pereira-Filho, O. Fatibello-Filho, J. Electroanal. Chem (2011) 209–216, 660.

DOI: 10.1016/j.jelechem.2011.07.001

Google Scholar

[6] K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Science (2004) 666–669, 306.

DOI: 10.1126/science.1102896

Google Scholar

[7] M. Mathesh, J. Liu, N.D. Nam, S.K. Lam, R. Zheng, C.J. Barrow, W. Yang, J. Mater. Chem. C 1 (2013) 3084–3090.

Google Scholar

[8] A. Pandikumar, G.T.S. How, P.S. Teo, S.O. Fatin, S. Jayabal, K.Z. Kamali, N. Yusoff, J. Asilah, R. Ramaraj, S. Abraham John, H.N. Lim, N.M. Huang, RSC Adv., 4, 2014, 63296-63323.

DOI: 10.1039/c4ra13777a

Google Scholar

[9] Cote, L. et al., J. Am. Chem. Soc. 2009, 1043–1049, 131.

Google Scholar

[10] Dharap P, Li Z L, Nagarajaiah S and Barrera E V, Nanotechnology, 2004, 15 379.

Google Scholar

[11] Fu X W, Liao Z M, Zhou J X, Zhou Y B, Wu H C, Zhang R, Jing G Y, Xu J, Wu X S, Guo W L and Yu D P , Appl. Phys. Lett. 2011, 213107, 99.

Google Scholar

[12] Lee Y, Bae S, Jang H, Jang S, Zhu S E, Sim S H, Song Y I, Hong B H, and Ahn J H Nano Lett. 2010, 10, 490.

DOI: 10.1021/nl903272n

Google Scholar

[13] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N and de Heer W A 2006 Science 312 1191.

DOI: 10.1126/science.1125925

Google Scholar

[14] S.B. Jo, J. Park, W.H. Lee, K. Cho, B.H. Hong, Solid State Commun. (2012) 1350–1358, 152.

Google Scholar

[15] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H Nature 2009 , 457, 706.

Google Scholar

[16] X.M. Chen, G.H. Chen, F.R. Gao, P.L. Yue, Environ. Sci. Technol. 37 (2003)5021–5026.

Google Scholar