Properties of SnO2-TiO2 Composite Films Deposited Using Jet Nebulizer Spray Pyrolysis for Gas Sensors

Article Preview

Abstract:

Crystalline SnO2 – TiO2 thin films were deposited on glass substrates by using the precursor solution containing tin acetate and calcium titanate as the source materials. After the deposition, the films were subjected to annealing at two different temperatures of 150o C and 3000 C. The structural, morphological and electrical properties have been investigated. X-ray diffraction analysis showed that the as-deposited as well as the annealed films were well crystallized and polycrystalline with cubic structure having (110) preferred orientation. AFM analysis showed uniform surface morphology with very low surface roughness values. The electrical parameters like the resistivity values are found decreasing and the mobility and carrier concentration values are observed to increase with annealing temperature. Sensor studies on SnO2 – TiO2 films annealed at 300o C showed very good response to methanol gas.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

94-101

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Apolinar-Iribe A, Acosta-Enriquez MC, Quevedo-Lopez MA, Ramirez-Bon R, De Leon A, Castillo SJ. Chalcogenide Lett 2011; 8: 77–82.

Google Scholar

[2] Wacogne B, Roe MP, Pattinson AT. Appl Phys Lett 1995; 67: 1674–6.

Google Scholar

[3] Stolt L, Hedstrom J, Kessler J. Appl Phys Lett 1993; 62: 597–9.

Google Scholar

[4] Hong Li, Xiutong Wang, Liang Zhang and Baorong Hou, Nanotechnology 26 (2015) 155704.

Google Scholar

[5] Cleber A Amorim, Cleocir J Dalmaschio, Edson R Leite, Adenilson J Chiquito, J. Phys. Chem. Solids, 75, 2014, 583–587.

Google Scholar

[6] Zayer NK, Greerf R, Rogers K, Grellier AJC, Pannell CN. Thin Solid Films, 1999, 352, 179–184.

DOI: 10.1016/s0040-6090(99)00329-6

Google Scholar

[7] Nima E. Gorji, Appl Phys A 119 (2014) 275-284.

Google Scholar

[8] C.M. Lampert, Sol. Ener. Mater. 6 (1981) 1.

Google Scholar

[9] J.F. Wang, Y.J. Wang, W.B. Su, H.C. Chen, W.X. Wang, Mater. Sci. Eng. B 96 (2002) 8.

Google Scholar

[10] M.R.C. Santos, P.R. Bueno, E. Longo, J.A. Varela, J. Eur. Ceram. Soc. 21 (2001) 161.

Google Scholar

[11] T.E. Moustafid, H. Cachet, B. Tribollet, D. Festy, Electrochim. Acta 47 (2002) 1209.

Google Scholar

[12] M. Okuya, S. Kaneko, K. Hiroshima, I. Yaggi, K. Murakami, J. Eur. Ceram. Soc. 21 (2001) (2099).

Google Scholar

[13] H.H. Huang, M.H. Hon, J. Cryst. Growth 222 (2001) 540–543.

Google Scholar

[14] G. Socrates, Infrared and Raman characteristics group frequencies third edition, Wiley, New York (2001).

Google Scholar

[15] V. Baranauskas, M. Fontana, Z.J. Guo, H.J. Ceragioli, A.C. Peterlevitz, Sens. Actuators B Chem. 107 (2005) 474–478.

DOI: 10.1016/j.snb.2004.11.004

Google Scholar

[16] J. Zuo, C. Xu, X. Liu, C. Wang, C. Wang, Y. Hu, Y. Qian, J. Appl. Phys. 75, 1994, 1835–1836.

Google Scholar

[17] P. Manjula, L. Satyanarayana, Y. Swarnalatha, Sunkara V. Manorama, Sens. Actuators B 138 (2009) 28–34.

Google Scholar

[18] M. Zhang, T. An, X. Hu, C. Wang, G. Sheng, J. Fu, Appl. Catal., A Gen. 260 (2004) 215.

Google Scholar

[19] Tsunekaa, S.; Fukuda, T.; Kasuya, A. J. Appl. Phys. 2000, 87, 1319.

Google Scholar

[20] A. Ayeshamariam, S. Ramalingam, M. Bououdina, M. Jayachandran, Spectrochimica Acta Part A 118 (2014) 1135–1143.

DOI: 10.1016/j.saa.2013.09.030

Google Scholar