[1]
Lee CT, Peng JD, Li CT et al (2014) Ni3Se4 hollow architectures as catalytic materials for the counter electrodes of dye-sensitized solar cells. Nano Energy 10: 201–211.
DOI: 10.1016/j.nanoen.2014.09.017
Google Scholar
[2]
Theerthagiri J, Senthil AR, Madhavan J et al (2015) Recent progress in non-platinum counter electrode materials for dye-sensitized solar cells. ChemElectroChem 2: 928-945.
DOI: 10.1002/celc.201402406
Google Scholar
[3]
Chen J, Ma Y et al (2005) A novel method for preparing platinized counter electrode of nanocrystalline dye-sensitized solar cells. Chin Sci Bull 50: 11-14.
DOI: 10.1360/982004-228
Google Scholar
[4]
Kwon K, Ganapathy V et al (2013) Nanopatterned conductive polymer films as a Pt, TCO-free counter electrode for low-cost dye-sensitized solar cells. Nanoscale 5: 7838–7843.
DOI: 10.1039/c3nr01294h
Google Scholar
[5]
Zheng X, Guo J et al (2013) Low-cost and high-performance CoMoS4 and NiMoS4 counter electrodes for dye-sensitized solar cells. Chem Commun 49: 9645-9647.
DOI: 10.1039/c3cc45064c
Google Scholar
[6]
Yue G, Zhang W et al (2013) Glucose aided synthesis of molybdenum sulfide/carbon nanotubes composites as counter electrode for high performance dye-sensitized solar cells. Electrochim Acta 112: 655– 662.
DOI: 10.1016/j.electacta.2013.09.019
Google Scholar
[7]
Yin X, Wu F et al (2013) Facile synthesis of poly(3, 4-ethylenedioxythiophene) film via solid-state polymerization as high-performance Pt-free counter electrodes for plastic dye-sensitized solar cells. ACS Appl Mater Interfaces 5: 8423-8429.
DOI: 10.1021/am401719e
Google Scholar
[8]
Yue G, Wu J et al (2013) A counter electrode of multi-wall carbon nanotubes decorated with tungsten sulfide used in dye-sensitized solar cells. Carbon 55: 1-9.
DOI: 10.1016/j.carbon.2012.10.045
Google Scholar
[9]
Bu C, Liu Y et al (2013) Highly transparent carbon counter electrode prepared via an in situ carbonization method for bifacial dye-sensitized solar cells. ACS Appl Mater Interfaces 5: 7432-7438.
DOI: 10.1021/am4017472
Google Scholar
[10]
Hwang S, Batmunkh M et al (2015) Dye-sensitized solar cell counter electrodes based on carbon nanotubes. ChemPhysChem 16: 53–65.
DOI: 10.1002/cphc.201402570
Google Scholar
[11]
Saranya K, Rameez Md et al (2015) Developments in conducting polymer based counter electrodes for dye-sensitized solar cells – An overview. Eur Polym J 66: 207–227.
DOI: 10.1016/j.eurpolymj.2015.01.049
Google Scholar
[12]
Lee KS, Lee Y et al (2012) Flexible and platinum-free dye-sensitized solar cells with conducting-polymer-coated graphene counter electrodes. ChemSusChem 5: 379-382.
DOI: 10.1002/cssc.201100430
Google Scholar
[13]
Wang H, Wei W et al (2013) Efficient ZnO-based counter electrodes for dye-sensitized solar cells. J Mater Chem A 1: 6622-6628.
DOI: 10.1039/c3ta10892a
Google Scholar
[14]
Lin JY, Chou SW (2013) Highly transparent NiCo2S4 thin film as an effective catalyst toward triiodide reduction in dye-sensitized solar cells. Electrochem Commun 37: 11–14.
DOI: 10.1016/j.elecom.2013.09.027
Google Scholar
[15]
Wu M, Wang Y et al (2011) Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes. Phys Chem Chem Phys 13: 19298-19301.
DOI: 10.1039/c1cp22819f
Google Scholar
[16]
Wu M, Lin X et al (2011) Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew Chem Int Ed 50: 3520–3524.
DOI: 10.1002/anie.201006635
Google Scholar
[17]
Wu M, Zhang Q et al (2011) Two flexible counter electrodes based on molybdenum and tungsten nitrides for dye-sensitized solar cells. J Mater Chem 21: 10761-10766.
DOI: 10.1039/c1jm11422k
Google Scholar
[18]
Du YF, Fan JQ et al (2012) One-step synthesis of stoichiometric Cu2ZnSnSe4 as counter electrode for dye-sensitized solar cells. ACS Appl Mater Interfaces 4: 1796−1802.
DOI: 10.1021/am3000616
Google Scholar
[19]
Duan Y, Tang Q et al (2014) Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency. Nanoscale 6: 12601–12608.
DOI: 10.1039/c4nr03900a
Google Scholar
[20]
Gong F, Wang H et al (2012) In situ growth of Co0. 85Se and Ni0. 85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J Am Chem Soc 134: 10953-10958.
DOI: 10.1021/ja303034w
Google Scholar
[21]
Wang W, Pan X et al (2014) FeSe2 films with controllable morphologies as efficient counter electrodes for dye-sensitized solar cells. Chem Commun 50: 2618-2620.
DOI: 10.1039/c3cc49175g
Google Scholar
[22]
Lee CT, Peng JD et al (2014) Ni3Se4 hollow architectures as catalytic materials for the counter electrodes of dye-sensitized solar cells. Nano Energy 10: 201–211.
DOI: 10.1016/j.nanoen.2014.09.017
Google Scholar
[23]
Zhang X, Yang Y et al (2015) Mesoporous Ni0. 85Se nanospheres grown in situ on graphene with high-performance in dye sensitized solar cells. ACS Appl Mater Interfaces 7: 8457–8464.
DOI: 10.1021/acsami.5b00464
Google Scholar
[24]
Gong F, Xu X et al (2013) NiSe2 as an efficient electrocatalyst for a Pt-free counter electrode of dye-sensitized solar cells. Chem Commun 49: 1437-1439.
DOI: 10.1039/c2cc38621f
Google Scholar
[25]
Zhang X, Jing TZ et al (2014) Synthesis of NiSe2/reduced graphene oxide crystalline materials and their efficient electrocatalytic activity in dye-sensitized solar cells. RSC Adv 4: 50312–50317.
DOI: 10.1039/c4ra09656h
Google Scholar
[26]
Aldakov D, Lefrançois A et al (2013) Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J Mater Chem C 1: 3756-3776.
DOI: 10.1039/c3tc30273c
Google Scholar
[27]
Sudhagar P, Nagarajan S et al (2011) Synergistic catalytic effect of a composite (CoS/PEDOT: PSS) counter electrode on triiodide reduction in dye-sensitized solar cells. ACS Appl Mater Interfaces 3: 1838-1843.
DOI: 10.1021/am2003735
Google Scholar
[28]
Theerthagiri J, Senthil RA et al (2014) Photocatalytic and photoelectrochemical studies of visible-light active α-Fe2O3–g-C3N4 nanocomposites. RSC Adv 4: 38222–38229.
DOI: 10.1039/c4ra04266b
Google Scholar
[29]
Jayaraman T, Raja SA et al (2015) Synthesis of a visible-light active V2O5–g-C3N4 heterojunction as an efficient photocatalytic and photoelectrochemical material. New J Chem 39: 1367-1374.
DOI: 10.1039/c4nj01807a
Google Scholar
[30]
Yue G, Wu J et al (2011) Application of poly(3, 4-ethylenedioxythiophene): polystyrenesulfonate/polypyrrole counter electrode for dye-sensitized solar cells. J Phys Chem C 116: 18057-18063.
DOI: 10.1021/jp303958r
Google Scholar
[31]
Liu X, Zhang N et al (2007) Hydrothermal synthesis and characterization of sea urchin-like nickel and cobalt selenides nanocrystals. Mater Sci Eng B 140: 38–43.
DOI: 10.1016/j.mseb.2007.03.007
Google Scholar
[32]
Shankar B. Dalavi, Theerthagiri J et al (2013) Synthesis, characterization and magnetic properties of nanocrystalline FexNi80−xCo20 ternary alloys. J Magn Magn Mater 344: 30–34.
DOI: 10.1016/j.jmmm.2013.05.026
Google Scholar
[33]
Heiba ZK, Mostafa NY et al (2013) Structural and magnetic properties of ferromagnetic nano-sized (Ni1-xCox)0. 85Se prepared by simple hydrothermal method. Mater Lett 93: 115–117.
DOI: 10.1016/j.matlet.2012.11.079
Google Scholar
[34]
Liu C, Lin M et al (2014) Preparation of nanostructured molybdenum carbides for CO hydrogenation. RSC Adv 4: 20948-20954.
DOI: 10.1039/c4ra01586j
Google Scholar
[35]
Veerappan G, Bojan K et al (2011) Sub-micrometer-sized graphite as a conducting and catalytic counter electrode for dye-sensitized solar cells. ACS Appl Mater Interfaces 3: 857-862.
DOI: 10.1021/am101204f
Google Scholar
[36]
Daoud SK, Schaming D et al (2014) Gold nanoparticles and poly(3, 4-ethylenedioxythiophene) (PEDOT)hybrid films as counter-electrodes for enhanced efficiency in dye-sensitized solar cells. Electrochim Acta 125: 601–605.
DOI: 10.1016/j.electacta.2014.01.154
Google Scholar
[37]
Arof AK, Naeem M et al (2014) Quasi solid state dye-sensitized solar cells based on polyvinyl alcohol (PVA) electrolytes containing I−/I3− redox couple. Opt Quant Electron 46: 143-154.
DOI: 10.1007/s11082-013-9723-z
Google Scholar