Hematite Fe2O3 Nanoparticles Incorporated Polyvinyl Alcohol Based Polymer Electrolytes for Dye-Sensitized Solar Cells

Article Preview

Abstract:

Influence of hematite iron oxide nanoparticles (α-Fe2O3 NPs) on ionic conductivity of polyvinyl alcohol/KI/I2 (PVA/KI/I2) polymer electrolytes was investigated in this work. The pure and different weight percentage (wt %) ratios (2, 3, 4 and 5 % with respect to PVA) of α-Fe2O3 NPs incorporated PVA/KI/I2 polymer electrolyte films were prepared by solution casting method using DMSO as solvent. The prepared polymer electrolyte films were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometer (XRD) and alternating current (AC)-impedance analysis. The AC-impedance studies revealed a significant increase in the ionic conductivity of α-Fe2O3 NPs incorporated PVA/KI/I2 polymer electrolytes than compared to pure PVA/KI/I2. This incorporated polymer electrolytes reduces the crystallinity of the polymer and enhance the mobility of I-/I3- redox couple, thereby increasing the ionic conductivity of polymer electrolytes. The highest ionic conductivity of 1.167 × 10-4 Scm-1 was observed for 4 wt % of α-Fe2O3 NPs incorporated PVA/KI/I2 polymer electrolyte. Also, the dye sensitized solar cell (DSSC) fabricated with this electrolyte showed an enhanced power conversion efficiency of 3.62 % than that of pure PVA/KI/I2 electrolyte (1.51 %). Thus, the synthesized α-Fe2O3 NPs added polymer electrolyte can be serve as a suitable material for dye sensitized solar cell application studies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

72-83

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.O. Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.

DOI: 10.1038/353737a0

Google Scholar

[2] J.H. Yum, E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J.E. Moser, C. Yi, M.K. Nazeeruddin, M. Grätzel, A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials, Nat. Commun., 3 (2012).

DOI: 10.1038/ncomms1655

Google Scholar

[3] L. Bay, K. West, B. Winther-Jensen, T. Jacobsen, Electrochemical reaction rates in a dye-sensitised solar cell-the iodide/tri-iodide redox system, Sol. Energy Mater. Sol. Cells 90 (2006) 341-135.

DOI: 10.1016/j.solmat.2005.04.040

Google Scholar

[4] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Electrolytes in dye-sensitized solar cells, Chem. Rev. 115 (2015) 2136-2173.

DOI: 10.1021/cr400675m

Google Scholar

[5] J. Wu, Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, L. Fang, Y. Huang, Progress on the electrolytes for dye-sensitized solar cells, Pure Appl. Chem. 11 (2008) 2241-2258.

DOI: 10.1351/pac200880112241

Google Scholar

[6] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye-sensitized solar cells with conversion efficiency of 11. 1 %, Jpn. J. Appl. Phys., 45 (2006) L638–L640.

DOI: 10.1143/jjap.45.l638

Google Scholar

[7] C.Y. Chem, M. Wang, J.Y. Li, N. Pootrakulchote, L. Alibabaei, C. Ngoc-le, J.D. Decoppet, J.H. Tsai, C. Gratzel C.G. Wu, S.M. Zakeeruddin, M. Gratzel, Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells, ACS Nano 3 (2009).

DOI: 10.1021/nn900756s

Google Scholar

[8] B. O'Regan, D.T. Schwartz, large enhancement in photocurrent efficiency caused by uv illumination of the dye-sensitized heterojunction TiO2/RuLL'NCS/CuSCN:  initiation and potential mechanisms, Chem. Mater. 10 (1998) 1501–1509.

DOI: 10.1021/cm9705855

Google Scholar

[9] L. Sicot, C. Fiorini, A. Lorin, J.M. Nunzi, P. Raimond, C. Sentein, Dye sensitized polythiophene solar cells, Synth. Met. 102 (1999) 991-992.

DOI: 10.1016/s0379-6779(98)01102-3

Google Scholar

[10] A.K. Arof, M.F. Aziz, M.M. Noor, M.A. Careem, L.R.A.K. Bandara, C.A. Thotawatthage, W.N.S. Rupasinghe, M.A.K.L. Dissanayake, Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte, Int. J Hydrogen Energy 39 (2014).

DOI: 10.1016/j.ijhydene.2013.07.028

Google Scholar

[11] B. Muthuraaman, G. Will, H. Wang, P. Moonie, J. Bell, Increased charge transfer of poly (ethylene oxide) based electrolyte by addition of small molecule and its application in dye-sensitized solar cells Electrochim. Acta 87 (2013) 526-531.

DOI: 10.1016/j.electacta.2012.09.030

Google Scholar

[12] J. Theerthagiri, R.A. Senthil, M.H.A. Buraidah, J. Madhavan, A.K. Arof, Studies of solvent effect on the conductivity of 2-mercaptopyridine-doped solid polymer blend electrolytes and its application in dye-sensitized solar cells J. Appl. Polym. Sci., (2015).

DOI: 10.1002/app.42489

Google Scholar

[13] M.G. Kang, K.M. Kim, K.S. Ryu, S.H. Chang, N.G. Park, J.S. Hong, K.J. Kim, dye-sensitized tio2 solar cells using polymer gel electrolytes based on PVdF-HFP J. Electrochem. Soc. 151 (2004) E257-E260.

DOI: 10.1149/1.1759698

Google Scholar

[14] Y.J. Choi, Y. Han, M.A. Ok, D.W. Kim, quasi-solid-state dye-sensitized solar cells using nanocomposite gel polymer electrolytes based on poly(propylene carbonate), Macromol. Chem. Phys. 212 (2011) 2583-2588.

DOI: 10.1002/macp.201100473

Google Scholar

[15] S. Ganesan, B. Muthuraaman, J. Madhavan, Vinod Mathew, P. Maruthamuthu, S. Austin Suthanthiraraj, The use of 2, 6-bis (N-pyrazolyl) pyridine as an efficient dopant in conjugation with poly(ethylene oxide) for nanocrystalline dye-sensitized solar cells, Electrochim. Acta 53 (2008).

DOI: 10.1016/j.electacta.2008.05.071

Google Scholar

[16] R.A. Senthil, J. Theerthagiri, J. Madhavan, Optimization of performance characteristics of 2-mercaptopyridine-doped polyvinylidene fluoride (PVDF) polymer electrolytes for dye-sensitized solar cells, J. Non-Cryst. Solids 406 (2014) 133-138.

DOI: 10.1016/j.jnoncrysol.2014.08.036

Google Scholar

[17] H. Chae, D. Song, Y.G. Lee, T. Son, W. Cho, Y.B. Pyun, T.Y. Kim, J.H. Lee, F.F. Santingo, J. Bisquert, Y.S. Kang, Chemical effects of tin oxide nanoparticles in polymer electrolytes-based dye-sensitized solar cells, J. Phys. Chem. C 118 (2014).

DOI: 10.1021/jp4117485

Google Scholar

[18] T. Stergiopoulos, I.M. Arabatzis, G. Katsaros, P. Falaras, binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells, Nano Lett. 11 (2002) 1259-1261.

DOI: 10.1021/nl025798u

Google Scholar

[19] J.H. Kim, M.S. Kang, Y.J. Kim, J. Won, N.G. Park, Y.S. Kang, Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles, Chem. Commun. (2004) 1662-1663.

DOI: 10.1039/b405215c

Google Scholar

[20] N. Tiautit, C. Puratane, S. Panpinit, S. Saengsuwan, Effect of SiO2 and TiO2 nanoparticles on the performance of dye- sensitized solar cells using PVDF-HFP/PVA gel electrolytes, Energy Procedia 56 (2014) 378-385.

DOI: 10.1016/j.egypro.2014.07.170

Google Scholar

[21] A.K. Arof, M. Naeem, F. Hameed, W.J.M.J.S.R. Jayasundara, M.A. Careem, L.P. Teo, M.H. Buraidah, Quasi solid state dye-sensitized solar cells based on polyvinyl alcohol (PVA) electrolytes containing I−/I−3 redox coupleOpt. Quant. Electron. (2013).

DOI: 10.1007/s11082-013-9723-z

Google Scholar

[22] J. Malathi, M. Kumaravadivel, G.M. Brahmanandhan, M. Hema, R. Baskaran, S. Selvasekarapandian, Structural, thermal and electrical properties of PVA–LiCF3SO3 polymer electrolyte, J. Non-Cryst. Solids 356 (2010) 2277-2281.

DOI: 10.1016/j.jnoncrysol.2010.08.011

Google Scholar

[23] Y. Pavani, M. Ravi, A.K. Sharma, V.V.R. Narasimha Rao, Characterization of poly(vinyl alcohol)/potassium chloride polymer electrolytes for electrochemical cell applications, Polym. Eng. Sci. 52 (2012) 1685-1692.

DOI: 10.1002/pen.23118

Google Scholar

[24] J. Theerthagiri, R.A. Senthil, A. Priya, J. Madhavan, R. J. V. Michael, Muthupandian Ashokkumar, Photocatalytic and photoelectrochemical studies of visible-light active α-Fe2O3–g-C3N4 nanocomposites, RSC Adv., 4 (2014) 38222- 38229.

DOI: 10.1039/c4ra04266b

Google Scholar

[25] A.R. Polu, R. Kumar, Preparation and characterization of PVA based solid polymer electrolytes for electrochemical cell applications, Chin. J. Polym. Sci. 31 (2013) 641-648.

DOI: 10.1007/s10118-013-1246-3

Google Scholar

[26] M. Hemaa, S. Selvasekarapandian, D. Arunkumar, A. Sakunthala, H. Nithya, FTIR, XRD and ac impedance spectroscopic study on PVA based polymer electrolyte doped with NH4X (X = Cl, Br, I), J. Non-Cryst. Solids 355 (2009) 84–90.

DOI: 10.1016/j.jnoncrysol.2008.10.009

Google Scholar

[27] X.L. Hu, G.M. Hou, M.Q. Zhang, M.Z. Rong, W.H. Ruan, E.P. Giannelis, A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica, J. Mater. Chem., 22 (2012) 18961–18967.

DOI: 10.1039/c2jm33156j

Google Scholar

[28] A.S. Bhatt, D.K. Bhat, Crystallinity, magnetic and electrochemical studies of PVDF/Co3O4 polymer electrolyte, Mater, Sci. Eng. B 177 (2012) 127-131.

DOI: 10.1016/j.mseb.2011.09.036

Google Scholar

[29] S. Ramesh, S.L. Lu, Effect of lithium salt concentration on crystallinity of poly(vinylidene fluoride-co-hexafluoropropylene)-based solid polymer electrolytes, J. Mol. Struct. 994 (2011) 403-409.

DOI: 10.1016/j.molstruc.2011.03.065

Google Scholar