Canvas of Optics behind Nanocrystalline TiO2 Film Engaged in Dye-Sensitized Solar Cells

Article Preview

Abstract:

A theoretical explanation of optics behind TiO2 has been presented with the help of a four phase model air/glass/ indium doped tin oxide/TiO2 designed by modifying Rouard’s model to calculate the final transmittance in to TiO2 layer. An optical simulation for the reflectance and transmittance has been executed for the synthesized nanocrystalline TiO2 films. To validate the theoretical results TiO2 film has been deposited onto indium doped tin oxide (ITO) layer by sol-gel dip coating technique. The novelty of the task lies behind the fact that transmittance helps to calculate the light harvesting efficiency of the Dye-Sensitized solar cells which is the ratio of light actually harvested to the light actually reached to TiO2 layer, and that can be done only if one knows transmittance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

54-60

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. O. Regan, M. Gratzel, Photoelectrochemical Solar cells, Nature. 353 (1991) 737-742.

Google Scholar

[2] Michael Grätzel, Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells, Inorg. Chem. 44 (2005) 6841–6851.

DOI: 10.1021/ic0508371

Google Scholar

[3] Ahmed Afifi and Mohammad Kazem Tabatabaei, Efficiency investigation of dye-sensitized solar cells based on the zinc oxide nanowires, Oriental Journal of Chemistry. 30 (2013) 155-160.

DOI: 10.13005/ojc/300118

Google Scholar

[4] T. G. Deepak, G.S. Anjusree, Sara Thomas, T. A. Arun, Shantikumar V. Nair and A. Sreekumaran Nair, A review on materials for light scattering in dye-sensitized solar cells, RSC Advances. 4 (2014) 17615-17638.

DOI: 10.1039/c4ra01308e

Google Scholar

[5] J. Desilvestro, S.M. Tulloch, and G.E. Tulloch; Volume Manufacture of Dye Solar Cells - A Materials Perspective, Inter. Conf. on Nanoscience and Nanotechnology, Melbourne, Australia, 25-29 February, (2008).

Google Scholar

[6] Yasuhiro Tachibana, Jacques E. Moser, Michael Gratzel, David R. Klug, and J. R. Durrant; Subpicosecond Interfacial Charge Separation in Dye-Sensitized Nanocrystalline Titanium Dioxide Films, J. Phys. Chem., 100 (1996) 20056-20062.

DOI: 10.1021/jp962227f

Google Scholar

[7] Jenny Nelson, Saif A. Haque, David R. Klug and James R. Durrant, Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes, Physical Review B, 63(2001) 205321.

DOI: 10.1103/physrevb.63.205321

Google Scholar

[8] Jenny Nelson; Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes, Physical Review B, 59 (1999).

Google Scholar

[9] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw and I. Uhlendorf, Dynamic Response of Dye-Sensitized Nanocrystalline SolarCells: Characterization by Intensity Modulated Photocurrent Spectroscopy, J. Phys. Chem. B , 101 (1997).

DOI: 10.1021/jp972466i

Google Scholar

[10] Zhen Wei, Yu Yao, Tao Huang, Aishui Yu, Solvothermal Growth of Well-Aligned TiO2 Nanowire Arrays for Dye-Sensitized Solar Cell: Dependence of Morphology and Vertical Orientation Upon Substrate Pretreatment, Int. J. Electrochem. Sci. 6 (2011).

DOI: 10.1016/j.electacta.2011.06.038

Google Scholar

[11] M. Riazian and A. Bahari, The growth of thin Titanium oxide (TiO2) film and nano size TiO2 powder, International Journal of the Physical Sciences. 6 (2011) 3756-3767.

Google Scholar

[12] Jun Hyuk Yang, Chung Wung Bark, Kyung Hwan Kim and Hyung Wook Choi, Characteristics of the Dye-Sensitized Solar Cells Using TiO2 Nanotubes Treated with TiCl4, Materials. 7 (2014) 3522-3532.

DOI: 10.3390/ma7053522

Google Scholar

[13] S. Kambe, S. Nakade, Y. Wada, Effects of crystal structure, size, shape and surface structural differences on photo-induced electron transport in TiO2 mesoporous electrodes, J. Mater. Chem. 12 (2002) 723-728H.

DOI: 10.1039/b105142n

Google Scholar

[14] X. Liu, J. K. Thomas, Synthesis of microporous titanosilicates ETS-10 and ETS-4 using solid TiO2 as the source of titanium, Chem Commun. 26 (1996) 1435-1436.

DOI: 10.1039/cc9960001435

Google Scholar

[15] N. G. Park, Van De J. Lagemaat, A. J. Frank, Comparison of dye-sensitized rutile and anatase based TiO2 solar cells, J Phys Chem B. 104 (2000) 8989-8994.

DOI: 10.1021/jp994365l

Google Scholar

[16] Divya Jyoti, Devendra Mohan and Rakesh Dhar, Investigation of Transport and Optical Properties of Mesoporous Anatase and Rutile TiO2 Films for Application in Dye-Sensitized Solar cells, Modern Physics Letters B. 26 (2012), 1250123-8 pages.

DOI: 10.1142/s0217984912501230

Google Scholar

[17] P. Rouard, Etudes des propriétés optiques des lames metalliques très minces, Ann. Phys. 7 (1937) 291-384.

DOI: 10.1051/anphys/193711070291

Google Scholar

[18] K. C. Park, The Extreme Values of Reflectivity and the Conditions for Zero Reflection from Thin Dielectric Films on Metal, Applied Optics. 3 (1964) 877-881.

DOI: 10.1364/ao.3.000877

Google Scholar

[19] R. Swanepoel, Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films, J. Phys. E. 17(1984) 896-903.

DOI: 10.1088/0022-3735/17/10/023

Google Scholar