Superplastic Behavior of a Cu-Cr-Zr Alloy Subjected to ECAP

Article Preview

Abstract:

A Cu-0.87%Cr-0.06%Zr alloy was subjected to equal channel angular pressing (ECAP) at a temperature of 400 °C up to a total strain of ~ 12. This processing produced ultra-fine grained (UFG) structure with an average grain size of 0.6 μm and an average dislocation density of ~4×1014 m-2. Tensile tests were carried out in the temperature interval 450 – 650 °C at strain rates ranging from 2.8´10-4 to 0.55 s-1. The alloy exhibits superplastic behavior in the temperature interval 550 – 600 °C at strain rate over 5.5´10-3 s-1. The highest elongation-to-failure of ~300% was obtained at a temperature of 575 °C and a strain rate of 2.8´10-3 s-1 with the corresponding strain rate sensitivity of 0.32. It was shown the superplastic flow at the optimum conditions leads to limited grain growth in the gauge section. The grain size increases from 0.6 μm to 0.87 μm after testing, while dislocation density decreases insignificantly to ~1014 m-2.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

404-409

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Pilling, N. Ridley Superplasticity in crystalline solids., The Institute of Metals, London, (1989).

Google Scholar

[2] K. Neishi, Z. Horita, T.G. Langdon, Achieving superplasticity in ultrafine-grained copper: influence of Zn and Zr additions, Mater. Sci. Eng. A 352 (2003) 129-135.

DOI: 10.1016/s0921-5093(02)00868-7

Google Scholar

[3] M. Kawasaki, R.B. Figueiredo, C. Xu, T.G. Langdon, Developing superplastic ductilities in ultrafine-grained metals, Metal. Mater. Trans. 38 A (2007) 1891-1898.

DOI: 10.1007/s11661-006-9000-x

Google Scholar

[4] K. Neishi, Z. Horita, T.G. Langdon, Achieving superplasticity in a Cu – 40%Zn alloy through severe plastic deformation, Scr. Mater. 45 (2001) 965-970.

DOI: 10.1016/s1359-6462(01)01119-8

Google Scholar

[5] R. Kaibyshev, T. Sakai, I. Nikulin, F. Musin and A. Goloborodko, Superplasticity in a 7055 aluminum alloy subjected to intense plastic deformation, Mater. Sci. Tech. 19 (2003) 1491-1497.

DOI: 10.1179/026708303225008167

Google Scholar

[6] R.Z. Valiev, D.A. Salimonenko, N.K. Tresnev, P.B. Berbon, T.G. Langdon, Observations of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes, Scr. Mater. 37 (1997) 1945-(1950).

DOI: 10.1016/s1359-6462(97)00387-4

Google Scholar

[7] F. Musin, R. Kaibyshev, Y. Motohashi, G. Itoh, High strain rate superplasticity in a commercial Al – Mg – Sc alloy, Scr. Mater. 50 (2004) 511-516.

DOI: 10.1016/j.scriptamat.2003.10.021

Google Scholar

[8] M. Mabuchi, K. Ameyama, H. Iwasaki, K. Higashi, Low temperature superplasticity of AZ91 magnesium alloy with non-equilibrium grain boundaries, Acta Mater. 470 (1999) 2047-(2057).

DOI: 10.1016/s1359-6454(99)00094-4

Google Scholar

[9] I.S. Batra, G.K. Dey, U.D. Kulkarni, S. Banerjee, Microstructure and properties of a Cu – Cr – Zr alloy, J. Nucl. Mater. 299 (2001) 91-100.

DOI: 10.1016/s0022-3115(01)00691-2

Google Scholar

[10] R. Mishnev, I. Shakhova, A. Belyakov, R. Kaibyshev, Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu – Cr – Zr alloy, Mater. Sci. Eng. A 629 (2015) 29-40.

DOI: 10.1016/j.msea.2015.01.065

Google Scholar

[11] H. Jazaeri, F.J. Humphreys, The transition from discontinuous to continuous recrystallization in some aluminium alloys II – annealing behavior, Acta Mater. 52 (2004) 3251–3262.

DOI: 10.1016/j.actamat.2004.03.031

Google Scholar