Submicrocrystalline Austenitic Stainless Steel Processed by Cold or Warm High Pressure Torsion

Article Preview

Abstract:

The formation of submicrocrystalline structure during severe plastic deformation and its effect on mechanical properties of an S304H austenitic stainless steel with chemical composition of Fe – 0.1C – 0.12N – 0.1Si – 0.95Mn – 18.4Cr – 7.85Ni – 3.2Cu – 0.5Nb – 0.01P – 0.006S (all in mass%) were studied. The severe plastic deformation was carried out by high pressure torsion (HPT) at two different temperatures, i.e., room temperature or 400°C. HPT at room temperature or 400°C led to the formation of a fully austenitic submicrocrystalline structure. The grain size and strength of the steels with ultrafine-grained structures produced by cold or warm HPT were almost the same. The ultimate tensile strengths were 1950 MPa and 1828 MPa after HPT at room temperature and 400°C, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

398-403

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881-981.

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[2] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science, Acta Mater. 61 (2013) 782-817.

DOI: 10.1016/j.actamat.2012.10.038

Google Scholar

[3] T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 7035-7059.

DOI: 10.1016/j.actamat.2013.08.018

Google Scholar

[4] O.A. Kaibyshev, Superplasticity of alloys, intermetallics and ceramics, Springer, Berlin, 1992, p.317.

Google Scholar

[5] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-89.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[6] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications Prog. Mater. Sci. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[7] S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, G.A. Salishchev, S.L. Semiatin, Evolution of grain and subgrain structure during cold rolling of commercial-purity titanium, Mater. Sci. Eng. A 528 (2011) 3474-3479.

DOI: 10.1016/j.msea.2011.01.039

Google Scholar

[8] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci. 60 (2014) 130-207.

DOI: 10.1016/j.pmatsci.2013.09.002

Google Scholar

[9] I. Shakhova, V. Dudko, A. Belyakov, K. Tsuzaki, R. Kaibyshev, Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical properties of an austenitic stainless steel, Mater. Sci. Eng. A 545 (2012) 176- 186.

DOI: 10.1016/j.msea.2012.02.101

Google Scholar

[10] M. Tikhonova, Y. Kuzminova, A. Belyakov, R. Kaibyshev, Nanocrystalline S304H austenitic stainless steel processed by multiple forging, Reviews on Advanced Materials Science 31 (2012) 68-73.

Google Scholar

[11] M. Tikhonova, A. Belyakov, Kaibyshev R., Strain-induced grain evolution in an austenitic stainless steel under warm multiple forging, Mater. Sci. Eng. A 564 (2013) 413-422.

DOI: 10.1016/j.msea.2012.11.088

Google Scholar

[12] G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall. 1 (1953) 22-31.

DOI: 10.1016/0001-6160(53)90006-6

Google Scholar

[13] B.E. Warren, J. Biscoe, The structure silica glass by X-ray diffraction studies, J. Am. Ceram. Soc. 21 (1938) 49-54.

Google Scholar

[14] R. Song, D. Ponge, D. Raabe, Mechanical properties of an ultrafine grained C-Mn steel processed by warm deformation and annealing, Acta Metall. 53 (2005) 4881-4892.

DOI: 10.1016/j.actamat.2005.07.009

Google Scholar

[15] N. Tsuchida, Effect of ferrite grain size on the estimated true stress-true strain relationship up to the plastic deformation limit in low carbon ferrite-cementite steels, J. Mater. Res., 28, No. 16 (2013) 2171-2179.

DOI: 10.1557/jmr.2013.221

Google Scholar

[16] A. Belyakov, S. Zherebtsov, G. Salishchev, Three-stage relationship between flow stress and dynamic grain size in titanium in a wide temperature interval, Mater. Sci. Eng. A 628 (2015) 104- 109.

DOI: 10.1016/j.msea.2015.01.036

Google Scholar

[17] T. Sakai, Dynamic Recrystallization Microstructures under Hot Working Conditions, J. Mater. Process. Technol. 53 (1995) 349-361.

DOI: 10.1016/0924-0136(95)01992-n

Google Scholar

[18] G. Salishchev, S. Mironov, S. Zherebtsov, A. Belyakov, Changes in misorientations of grain boundaries in titanium during deformation, Materials Characterization 61 (2010) 732-739.

DOI: 10.1016/j.matchar.2010.04.005

Google Scholar