[1]
R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881-981.
DOI: 10.1016/j.pmatsci.2006.02.003
Google Scholar
[2]
Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science, Acta Mater. 61 (2013) 782-817.
DOI: 10.1016/j.actamat.2012.10.038
Google Scholar
[3]
T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 7035-7059.
DOI: 10.1016/j.actamat.2013.08.018
Google Scholar
[4]
O.A. Kaibyshev, Superplasticity of alloys, intermetallics and ceramics, Springer, Berlin, 1992, p.317.
Google Scholar
[5]
R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-89.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[6]
A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications Prog. Mater. Sci. 53 (2008) 893-979.
DOI: 10.1016/j.pmatsci.2008.03.002
Google Scholar
[7]
S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, G.A. Salishchev, S.L. Semiatin, Evolution of grain and subgrain structure during cold rolling of commercial-purity titanium, Mater. Sci. Eng. A 528 (2011) 3474-3479.
DOI: 10.1016/j.msea.2011.01.039
Google Scholar
[8]
T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci. 60 (2014) 130-207.
DOI: 10.1016/j.pmatsci.2013.09.002
Google Scholar
[9]
I. Shakhova, V. Dudko, A. Belyakov, K. Tsuzaki, R. Kaibyshev, Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical properties of an austenitic stainless steel, Mater. Sci. Eng. A 545 (2012) 176- 186.
DOI: 10.1016/j.msea.2012.02.101
Google Scholar
[10]
M. Tikhonova, Y. Kuzminova, A. Belyakov, R. Kaibyshev, Nanocrystalline S304H austenitic stainless steel processed by multiple forging, Reviews on Advanced Materials Science 31 (2012) 68-73.
Google Scholar
[11]
M. Tikhonova, A. Belyakov, Kaibyshev R., Strain-induced grain evolution in an austenitic stainless steel under warm multiple forging, Mater. Sci. Eng. A 564 (2013) 413-422.
DOI: 10.1016/j.msea.2012.11.088
Google Scholar
[12]
G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall. 1 (1953) 22-31.
DOI: 10.1016/0001-6160(53)90006-6
Google Scholar
[13]
B.E. Warren, J. Biscoe, The structure silica glass by X-ray diffraction studies, J. Am. Ceram. Soc. 21 (1938) 49-54.
Google Scholar
[14]
R. Song, D. Ponge, D. Raabe, Mechanical properties of an ultrafine grained C-Mn steel processed by warm deformation and annealing, Acta Metall. 53 (2005) 4881-4892.
DOI: 10.1016/j.actamat.2005.07.009
Google Scholar
[15]
N. Tsuchida, Effect of ferrite grain size on the estimated true stress-true strain relationship up to the plastic deformation limit in low carbon ferrite-cementite steels, J. Mater. Res., 28, No. 16 (2013) 2171-2179.
DOI: 10.1557/jmr.2013.221
Google Scholar
[16]
A. Belyakov, S. Zherebtsov, G. Salishchev, Three-stage relationship between flow stress and dynamic grain size in titanium in a wide temperature interval, Mater. Sci. Eng. A 628 (2015) 104- 109.
DOI: 10.1016/j.msea.2015.01.036
Google Scholar
[17]
T. Sakai, Dynamic Recrystallization Microstructures under Hot Working Conditions, J. Mater. Process. Technol. 53 (1995) 349-361.
DOI: 10.1016/0924-0136(95)01992-n
Google Scholar
[18]
G. Salishchev, S. Mironov, S. Zherebtsov, A. Belyakov, Changes in misorientations of grain boundaries in titanium during deformation, Materials Characterization 61 (2010) 732-739.
DOI: 10.1016/j.matchar.2010.04.005
Google Scholar