Low-Temperature Superplasticity in an Al-Mg-Sc Alloy Processed by ECAP

Article Preview

Abstract:

The ultrafine grained structure of an AA5024 with an average size of ∼0.7 μm was produced by equal-channel angular pressing (ECAP) at 300°C with a total strain of ~12. Superplastic behavior of this alloy was examined in the temperature interval 175 - 300°C at strain rates ranging from 10-4 to 10-1 s-1. The maximum elongation-to-failure of ~1200% with the corresponding strain rate sensitivity coefficient, m, of ∼0.49 was attained at a temperature of 275°C and a strain rate of 5.6×103s1. At 175°C (~0.53Tm, where Tm is the melting point), the elongation-to-failure of ~370% with the m value of ~0.3 was found at ε̇=1.4×104 s1.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

422-427

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Barnes, A.J., Superplastic forming: 40 years and still growing, J. Mater. Eng. Perform. 16 (2007) 440-454.

DOI: 10.1007/s11665-007-9076-5

Google Scholar

[2] H.P. Pu, F.C. Liu, J.C. Huang, Characterization and analysis of low temperature superplasticity in 8090 Al-Li alloys, Metall. Mater. Trans. A 26 (1995) 1153-1166.

DOI: 10.1007/bf02670612

Google Scholar

[3] M. Kawasaki, T.G. Langdon, Principles of Superplasticity in Ultrafine-Grained Materials, J. Mater. Sci. 42 (2007) 1782-1796.

DOI: 10.1007/s10853-006-0954-2

Google Scholar

[4] S. Ota, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T.G. Langdon, Low-Temperature Superplasticity in Al Alloys Processed by Equal-Channel Angular Pressing, Mater. Trans. 43 (2002) 2364-2369.

DOI: 10.2320/matertrans.43.2364

Google Scholar

[5] F. Musin, R. Kaibyshev, Y. Motohashi, G. Itoh, Achievement of Low Temperature Superplasticity in a Commercial Aluminum Alloy Processed by Equal-Channel Angular Extrusion, Mater. Sci. Forum, 447-448 (2004) 459-464.

DOI: 10.4028/www.scientific.net/msf.447-448.465

Google Scholar

[6] Z. Horita, M. Furukawa, M. Nemoto, A. J. Barnes, T. G. Langdon, Superplastic forming at high strain rates after severe plastic deformation, Acta Mater. 48 (2000) 3633-3640.

DOI: 10.1016/s1359-6454(00)00182-8

Google Scholar

[7] V.M. Segal, Materials processing by simple shear, Mater Sci. Eng. A 197 (1995) 157-164.

Google Scholar

[8] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881-981.

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[9] S. Ferrasse, V.M. Segal, F. Alford, J. Kardokus, S. Strothers, Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries, Mater. Sci. Eng. A 493 (2008) 130-140.

DOI: 10.1016/j.msea.2007.04.133

Google Scholar

[10] A. Mogucheva, D. Tagirova, R. Kaibyshev, Superplasticity in a 5024 aluminium alloy processed by severe plastic deformation, Mater. Sci. Forum 735 (2013) 353-358.

DOI: 10.4028/www.scientific.net/msf.735.353

Google Scholar

[11] Yu.A. Filatov, V.I. Yelagin, V.V. Zakharov, New Al–Mg–Sc alloys, Mater. Sci. Eng. A 280 (2000) 97-101.

DOI: 10.1016/s0921-5093(99)00673-5

Google Scholar

[12] A. Mogucheva, R. Kaibyshev, Effect of ECAP on microstructure and mechanical properties of an Al-Mg-Sc alloy, Mater. Sci. Forum 667-669 (2011) 949-954.

DOI: 10.4028/www.scientific.net/msf.667-669.949

Google Scholar

[13] M. Kamachi, M. Furukawa, Z. Horita, T.G. Langdon, Equal-channel angular pressing using plate samples, Mater. Sci. Eng. A 361 (2003) 258-266.

DOI: 10.1016/s0921-5093(03)00522-7

Google Scholar

[14] A. Mogucheva, R. Kaibyshev, Effect of Intense Plastic Straining and Subsequent Heat Treatment on Mechanical Properties of an Al-Li-Mg-Sc-Zr Alloy, Adv. Mater. Res. 89-91 (2010) 389-394.

DOI: 10.4028/www.scientific.net/amr.89-91.389

Google Scholar

[15] A. Mogucheva, E. Babich, B. Ovsyannikov, R. Kaibyshev, Microstructural evolution in a 5024 aluminum alloy processed by ECAP with and without back pressure, Mater. Sci. Eng. A 560 (2013) 178-192.

DOI: 10.1016/j.msea.2012.09.054

Google Scholar

[16] J. Pilling and N. Ridley, Superplasticity in Crystaline Solids, The Institute of Metals, London, (1989).

Google Scholar

[17] O.A. Kaibyshev, Superplasticity of Alloys, Intermetallides, and Ceramics, Springer-Verlag, Berlin, (1992).

Google Scholar