[1]
Barnes, A.J., Superplastic forming: 40 years and still growing, J. Mater. Eng. Perform. 16 (2007) 440-454.
DOI: 10.1007/s11665-007-9076-5
Google Scholar
[2]
H.P. Pu, F.C. Liu, J.C. Huang, Characterization and analysis of low temperature superplasticity in 8090 Al-Li alloys, Metall. Mater. Trans. A 26 (1995) 1153-1166.
DOI: 10.1007/bf02670612
Google Scholar
[3]
M. Kawasaki, T.G. Langdon, Principles of Superplasticity in Ultrafine-Grained Materials, J. Mater. Sci. 42 (2007) 1782-1796.
DOI: 10.1007/s10853-006-0954-2
Google Scholar
[4]
S. Ota, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T.G. Langdon, Low-Temperature Superplasticity in Al Alloys Processed by Equal-Channel Angular Pressing, Mater. Trans. 43 (2002) 2364-2369.
DOI: 10.2320/matertrans.43.2364
Google Scholar
[5]
F. Musin, R. Kaibyshev, Y. Motohashi, G. Itoh, Achievement of Low Temperature Superplasticity in a Commercial Aluminum Alloy Processed by Equal-Channel Angular Extrusion, Mater. Sci. Forum, 447-448 (2004) 459-464.
DOI: 10.4028/www.scientific.net/msf.447-448.465
Google Scholar
[6]
Z. Horita, M. Furukawa, M. Nemoto, A. J. Barnes, T. G. Langdon, Superplastic forming at high strain rates after severe plastic deformation, Acta Mater. 48 (2000) 3633-3640.
DOI: 10.1016/s1359-6454(00)00182-8
Google Scholar
[7]
V.M. Segal, Materials processing by simple shear, Mater Sci. Eng. A 197 (1995) 157-164.
Google Scholar
[8]
R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881-981.
DOI: 10.1016/j.pmatsci.2006.02.003
Google Scholar
[9]
S. Ferrasse, V.M. Segal, F. Alford, J. Kardokus, S. Strothers, Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries, Mater. Sci. Eng. A 493 (2008) 130-140.
DOI: 10.1016/j.msea.2007.04.133
Google Scholar
[10]
A. Mogucheva, D. Tagirova, R. Kaibyshev, Superplasticity in a 5024 aluminium alloy processed by severe plastic deformation, Mater. Sci. Forum 735 (2013) 353-358.
DOI: 10.4028/www.scientific.net/msf.735.353
Google Scholar
[11]
Yu.A. Filatov, V.I. Yelagin, V.V. Zakharov, New Al–Mg–Sc alloys, Mater. Sci. Eng. A 280 (2000) 97-101.
DOI: 10.1016/s0921-5093(99)00673-5
Google Scholar
[12]
A. Mogucheva, R. Kaibyshev, Effect of ECAP on microstructure and mechanical properties of an Al-Mg-Sc alloy, Mater. Sci. Forum 667-669 (2011) 949-954.
DOI: 10.4028/www.scientific.net/msf.667-669.949
Google Scholar
[13]
M. Kamachi, M. Furukawa, Z. Horita, T.G. Langdon, Equal-channel angular pressing using plate samples, Mater. Sci. Eng. A 361 (2003) 258-266.
DOI: 10.1016/s0921-5093(03)00522-7
Google Scholar
[14]
A. Mogucheva, R. Kaibyshev, Effect of Intense Plastic Straining and Subsequent Heat Treatment on Mechanical Properties of an Al-Li-Mg-Sc-Zr Alloy, Adv. Mater. Res. 89-91 (2010) 389-394.
DOI: 10.4028/www.scientific.net/amr.89-91.389
Google Scholar
[15]
A. Mogucheva, E. Babich, B. Ovsyannikov, R. Kaibyshev, Microstructural evolution in a 5024 aluminum alloy processed by ECAP with and without back pressure, Mater. Sci. Eng. A 560 (2013) 178-192.
DOI: 10.1016/j.msea.2012.09.054
Google Scholar
[16]
J. Pilling and N. Ridley, Superplasticity in Crystaline Solids, The Institute of Metals, London, (1989).
Google Scholar
[17]
O.A. Kaibyshev, Superplasticity of Alloys, Intermetallides, and Ceramics, Springer-Verlag, Berlin, (1992).
Google Scholar