Heat Assisted Dieless Drawing Process of Superplastic Metal Microtubes - From Zn22Al to β Titanium Alloys

Article Preview

Abstract:

A heat assisted superplastic dieless drawing process that requires no dies or tools is applied to the drawing of a Zn-22Al and β titanium superplastic alloy for not only circular but also noncircular microtubes such as square, rectangular and noncircular multi core tubes having square inner and rectangular outer cross sections. As a result, the tendency has been to increase the limiting reduction in area with increasing strain rate sensitivity index m value. We successfully fabricate Zn-22Al alloy, AZ31 magnesium, β titanium circular microtubes with outer diameter of 191μm, 890μm and 180μm, respectively. Furthermore, a noncircular micro tube, which has inner square tubes with a 335μm side, and an outer rectangular tube of 533×923μm were fabricated successfully. During the dieless drawing process, the geometrical similarity law in cross section which the tube is drawn while maintaining its initial shape can be satisfied. The smooth surface can be obtained in case of superplastic dieless drawing process without contact situation with dies and tools. Consequently, it is found that the superplastic dieless drawing is effective for the fabrication of circular and noncircular multicore microtubes.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

459-467

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, U. Engel, Microforming, CIRP Ann. - Manuf. Technol. 50 (2001) 445–462.

DOI: 10.1016/s0007-8506(07)62991-6

Google Scholar

[2] U. Engel, R. Eckstein, Microforming—from basic research to its realization, J. Mater. Process. Technol. 125 (2002) 35–44.

DOI: 10.1016/s0924-0136(02)00415-6

Google Scholar

[3] Y. Saotome, H. Iwazaki, Superplastic backward microextrusion of microparts for micro-electro-mechanical systems, J. Mater. Process. Technol. 119 (2001) 307–311.

DOI: 10.1016/s0924-0136(01)00957-8

Google Scholar

[4] Y. Saotome, Y. Noguchi, T. Zhang, A. Inoue, Characteristic behavior of Pt-based metallic glass under rapid heating and its application to microforming, Mater. Sci. Eng. A. 375-377 (2004) 389–393.

DOI: 10.1016/j.msea.2003.10.173

Google Scholar

[5] V. Weiss, R.A. Kot, Dieless Wire Drawing with Transformation Plasticity, Wire Journal,. 9 (1969) 182–189.

Google Scholar

[6] T. Furushima, A. Shirasaki, K. Manabe, Fabrication of noncircular multicore microtubes by superplastic dieless drawing process, J. Mater. Process. Technol. 214 (2014) 29–35.

DOI: 10.1016/j.jmatprotec.2013.07.005

Google Scholar

[7] T. Furushima, K. Manab, Experimental and Numerical Study on Dieless Drawing Process of Aluminum Alloy Extruded Tubes with Double Hollow Section, J. Chinese Soc. Mech. Eng. 31 (2010) 99–105.

DOI: 10.2464/jilm.57.351

Google Scholar

[8] T. Furushima, K. Manabe, Experimental and numerical study on deformation behavior in dieless drawing process of superplastic microtubes, J. Mater. Process. Technol. 191 (2007) 59–63.

DOI: 10.1016/j.jmatprotec.2007.03.084

Google Scholar

[9] T. Furushima, K. Manabe, FE analysis of size effect on deformation and heat transfer behavior in microtube dieless drawing, J. Mater. Process. Technol. 201 (2008) 123–127.

DOI: 10.1016/j.jmatprotec.2007.11.229

Google Scholar

[10] T. Furushima, K. Manabe, Experimental study on multi-pass dieless drawing process of superplastic Zn–22%Al alloy microtubes, J. Mater. Process. Technol. 187-188 (2007) 236–240.

DOI: 10.1016/j.jmatprotec.2006.11.204

Google Scholar

[11] T. Furushima, K. Manabe, T. Sakai, Fabrication of Superplastic Microtubes Using Dieless Drawing Process, Mater. Trans. 49 (2008) 1365–1371.

DOI: 10.2320/matertrans.p-mra2008810

Google Scholar

[12] H. Sekiguchi, K. Kobatake, K. Osakada, A Fundamental Study on Dieless Drawing, in: Proc. Int. M. T. D. R. Conf. Adv. Mach. Tool Des. Res. 15, 1974: p.539–544.

DOI: 10.1007/978-1-349-01986-1_63

Google Scholar

[13] H. Sekiguchi, K. Kobatake, Development of Dieless Drawing Process, Adv. Technol. Plast. 1987. (1987) 347–354.

Google Scholar

[14] M.J. Tan, X.J. Zhu, S. Thiruvarudchelvan, K.M. Liew, Superplasticity studies in a beta titanium alloy, Arch. Mater. Sci. Eng. Vol. 28 (2007) 717–721.

Google Scholar

[15] T. Furushima, T. Shimizu, K. Manabe, Grain Refinement by Combined ECAE/Extrusion and Dieless Drawing Processes for AZ31 Magnesium Alloy Tubes, Mater. Sci. Forum. 654-656 (2010) 735–738.

DOI: 10.4028/www.scientific.net/msf.654-656.735

Google Scholar

[16] T. Furushima, K. Manabe, Fabrication of AZ31 Magnesium Alloy Fine Tubes by Dieless Drawing Process, Steel Res. Int. (2010) 990–992.

DOI: 10.9773/sosei.51.990

Google Scholar

[17] H. Takuda, T. Morishita, T. Kinoshita, N. Shirakawa, Modelling of formula for flow stress of a magnesium alloy AZ31 sheet at elevated temperatures, J. Mater. Process. Technol. 164-165 (2005) 1258–1262.

DOI: 10.1016/j.jmatprotec.2005.02.034

Google Scholar

[18] J.H. Dautzenberg, J.A.G. Kals, Surface Roughness Caused by Metal Forming, CIRP Ann. - Manuf. Technol. 34 (1985) 477–479.

DOI: 10.1016/s0007-8506(07)61815-0

Google Scholar

[19] T. Furushima, H. Tsunezaki, K.I. Manabe, S. Alexsandrov, Ductile fracture and free surface roughening behaviors of pure copper foils for micro/meso-scale forming, Int. J. Mach. Tools Manuf. 76 (2014) 34–48.

DOI: 10.1016/j.ijmachtools.2013.10.001

Google Scholar

[20] T. Furushima, K. Manabe, Dieless drawing process of extruded non-circular aluminum alloy tubes with double hollow section, J. Japan Inst. Light Met. 57 (2007) 351–356.

DOI: 10.2464/jilm.57.351

Google Scholar