About Formability of Ultra-Fine Grained Metallic Materials

Article Preview

Abstract:

Ultra-fine grained (UFG) and nanostructured metallic materials obtained via severe plastic deformation typically show very high mechanical strength but low tensile ductility, which dramatically limits their practical utility. Significant efforts were made to improve uniaxial tensile ductility of ultra-fine grained and nanostructured metallic materials. The developed strategies can be divided into two main groups. (1) The ‘mechanical’ strategies employ the mechanical characteristics of these materials, such as their work hardening ability and/or strain rate sensitivity. These mechanical characteristics can be varied via changing testing parameters, such as temperature and/or strain rate. (2) The ‘microstructural’ strategies are based on idea of intelligent microstructural design to suppress necking at early stages of plastic deformation thus improving ductility. However, not much attention was paid to the fact, that in metallforming operations, metallic materials are not deformed uniaxially, but have to undergo deformation under complex strain paths. This work aims to demonstrate that despite UFG metallic materials have low tensile ductility, they can show enhanced formability during plastic deformation in complex stress state (such as formability under biaxial stretch, which is sufficient for metalforming operations.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

476-481

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 51-59.

DOI: 10.1016/j.actamat.2013.08.018

Google Scholar

[2] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[3] R.Z. Valiev, A.P. Zhilyaev, T.G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications, John Wiley & Sons: Hoboken, NJ, USA, (2014).

Google Scholar

[4] E.O. Hall, The Deformation and Ageing of Mild Steel, Proc. Phys. Soc. B 64 (1951) 747–753.

Google Scholar

[5] N.J. Petch, The cleavage strength of polycrystals, J. Iron. Steel Inst. 174 (1953) 25–28.

Google Scholar

[6] I.A. Ovid'ko, T.G. Langdon, Enhanced ductility of nanocrystallien and ultra-fine grained metals, Rev. Adv. Mater. Sci. 30 (2012) 103-111.

Google Scholar

[7] Y. Zhao, Y.T. Zhu, E.J. Lavernia, Strategies for improving tensile ductility of bulk nanostructured materials, Adv. Eng. Mater. 12 (2010) 769-778.

DOI: 10.1002/adem.200900335

Google Scholar

[8] E. Ma, Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys, JOM 4 (2006) 49-53.

DOI: 10.1007/s11837-006-0215-5

Google Scholar

[9] Y.M. Wang, E. Ma, Three strategies to achieve uniform tensile elongation in a nanostructured metal, Acta Mater. 52 (2004) 1699-1709.

DOI: 10.1016/j.actamat.2003.12.022

Google Scholar

[10] Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Nature, 419 (2002) 912-915.

DOI: 10.1038/nature01133

Google Scholar

[11] Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, Y.T. Zhu, Simultaneously increasing the ductility and strength of nanostructured alloys, Adv. Mater. 18 (2006) 2280-2283.

DOI: 10.1002/adma.200600310

Google Scholar

[12] Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, Y.T. Zhu, Simultaneously increasing the ductility and strength of ultra‐fine‐grained pure copper, Adv. Mater. 18 (2006) 2949-2953.

DOI: 10.1002/adma.200601472

Google Scholar

[13] Y.H. Zhao, X.Z. Liao, Y.T. Zhu, Z. Horita, C. Xu, T.G. Langdon, Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy, Appl. Phys. Lett. 89 (2006) 121906.

DOI: 10.1063/1.2356310

Google Scholar

[14] Y.H. Zhao, X.Z. Liao, Z. Horita, T.G. Langdon, Y.T. Zhu, Determining the optimal stacking fault energy for achieving high ductility in ultra-fine grained Cu-Zn alloys, Mater. Sci. Eng. A. 493 (2008) 123-129.

DOI: 10.1016/j.msea.2007.11.074

Google Scholar

[15] R.Z. Valiev, M. Yu. Murashkin, A. Kilmametov, B. Straumal, N.Q. Chinh, T.G. Langdon, Unusual super-ductility at room temperature in an ultra-fine grained aluminium alloy. J. Mater. Sci. 45 (2010) 4718-4724.

DOI: 10.1007/s10853-010-4588-z

Google Scholar

[16] K. Yang, Yu. Ivanisenko, A. Caron, A. Chuvilin, L. Kurmanaeva, T. Scherer, R.Z. Valiev, H.J. Fecht, Mechanical behavior and in situ observation of shear bands in ultra-fine grained Pd and Pd-Ag alloys, Acta Mater. 58 (2010) 967-978.

DOI: 10.1016/j.actamat.2009.10.013

Google Scholar

[17] R.Z. Valiev, T.G. Langdon, Principles of equal channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881-981.

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[18] S. Komura, Z. Horita, M. Nemoto, T.G. Langdon, Influence of stacking fault energy on microstructural development in equal-channel angular pressing, J. Mater. Res. 14 (1999) 4044-4050.

DOI: 10.1557/jmr.1999.0546

Google Scholar

[19] F.H. Dalla Torre, E.V. Pereloma, C.H.J. Davies, Strain hardening behaviour and deformation kinetics of Cu deformed by equal channel angular extrusion from 1 to 16 passes, Acta Mater. 54 (2006) 1135-1146.

DOI: 10.1016/j.actamat.2005.10.041

Google Scholar

[20] M. Murashkin, I. Sabirov, V. Kazykhanov, E. Bobruk, R.Z. Valiev, Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC. J. Mater. Sci. 48 (2013) 4501-4509.

DOI: 10.1007/s10853-013-7279-8

Google Scholar

[21] E.C. Moreno-Valle, M.A. Monclus, J.M. Molina-Aldareguia, N. Enikeev, I. Sabirov, Biaxial deformation behavior and enhanced formability of ultrafine-grained pure copper. Metall. Mater. Trans. A. 44 (2013) 2399-2408.

DOI: 10.1007/s11661-012-1576-8

Google Scholar