[1]
G. Bernhart, P. Lours, T. Cutard, V. Velay, and F. Nazaret, Processes and equipment for superplastic forming of metals. Woodhead Publishing Limited, (2011).
DOI: 10.1533/9780857092779.1.49
Google Scholar
[2]
B. Swale, M. Pizzingrilli, and E. McCullagh, Superplastic Forming – Cost Effective, in Key Engineering Materials, 2010, vol. 433, p.41–47.
DOI: 10.4028/www.scientific.net/kem.433.41
Google Scholar
[3]
P. Wilson, C. Couzins-Short, H. Chesterton, and A. Jocelyn, Superplastic Forming and Diffusion Bonding: Current Cost, Value and Future Trends, in Key Engineering Materials, 2010, vol. 433, p.119–124.
DOI: 10.4028/www.scientific.net/kem.433.119
Google Scholar
[4]
J. Liu, M. -J. Tan, A. E. W. Jarfors, S. C. V Lim, K. -S. Fong, and S. Castagne, Greener manufacturing: Superplastic-like forming, J. Phys. Conf. Ser., vol. 379, p.012034, Aug. (2012).
DOI: 10.1088/1742-6596/379/1/012034
Google Scholar
[5]
N. Chandra, Constitutive behaviour of superplastic materials, Int. J. Non. Linear. Mech., vol. 37, no. December 2000, p.461–484, (2002).
Google Scholar
[6]
S. Rhaipu, The effect of rapid heat treatment on the high-temperature tensile behavior of superplastic Ti-6Al-4V, Metall. Mater. Trans. A, vol. 33, no. 1, p.83–92, (2002).
DOI: 10.1007/s11661-002-0007-7
Google Scholar
[7]
H. Karbasian and a. E. Tekkaya, A review on hot stamping, J. Mater. Process. Technol., vol. 210, no. 15, p.2103–2118, (2010).
DOI: 10.1016/j.jmatprotec.2010.07.019
Google Scholar
[8]
R. Neugebauer, T. Altan, M. Geiger, M. Kleiner, and a. Sterzing, Sheet metal forming at elevated temperatures, CIRP Ann. - Manuf. Technol., vol. 55, no. 2, p.793–816, Jan. (2006).
DOI: 10.1016/j.cirp.2006.10.008
Google Scholar
[9]
A. Jocelyn, A. Kar, A. Fanourakis, T. Flower, M. Ackerman, A. Keevil, and J. Way, Indirect Versus Direct Heating of Sheet Materials: Superplastic Forming and Diffusion Bonding Using Lasers, J. Mater. Eng. Perform., vol. 19, no. 4, p.527–532, Mar. (2010).
DOI: 10.1007/s11665-010-9619-z
Google Scholar
[10]
G. Bernhart, J. P. Arcens, and Y. Le Maoult, Innovative Superplastic Forming Based on In Situ Infra-Red Sheet Heating, in Materials Science Forum, 2013, vol. 735, p.415–421.
DOI: 10.4028/www.scientific.net/msf.735.415
Google Scholar
[11]
United States Patent Patent No.: US 6, 835, 254 B2, Hammar et al., Hot air convection; superplastic; cold working; electrical resistance, 28-Dec-(2004).
Google Scholar
[12]
United States Patent Patent No.: US 5, 410, 132, Gregg et al. Superplastic forming using induction heating, 25-Apr-(1995).
Google Scholar
[13]
J. Liu and K. Zhang, Resistance heating superplastic forming and influence of current on deformation mechanism of TA15 titanium alloy, Int. J. Adv. Manuf. Technol., vol. 76, no. 9–12, p.1673–1680, (2014).
DOI: 10.1007/s00170-014-6286-5
Google Scholar
[14]
D. Sorgente and L. Tricarico, Characterization of a superplastic aluminium alloy ALNOVI-U through free inflation tests and inverse analysis, Int. J. Mater. Form., vol. 7, p.179–187, (2014).
DOI: 10.1007/s12289-012-1118-3
Google Scholar
[15]
D. Sorgente and L. Tricarico, Pressure Profile Designing in Superplastic Forming Based on the Strain Rate and on Post-forming Properties, J. Mater. Eng. Perform., vol. 23, no. June, p.2025–2033, (2014).
DOI: 10.1007/s11665-014-1027-3
Google Scholar