Morphological, Structural and Optical Properties of Mg Doped ZnO Nanostructured Growth by Aqueous Solution Method

Article Preview

Abstract:

Mg doped Zinc oxide nanorods films were successfully deposited on glass substrate prepared by aqueous solution-immersion method. The influence of annealing temperature on the nanorod films were studied at different annealing temperatures 0°C, 250°C and 500°C respectively. FESEM showed the morphology of the films with hexagonal nanorods growth. XRD results indicated the crystalline structure of ZnO doped Mg nanorods films where the peak intensity of ZnO was decreased as annealing temperature increases. Photoluminescence (PL) measurement at room temperature showed the increasing of intensity peak for visible spectra with increasing of annealing temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

454-458

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Van Quy, V. Anh Minh, N. Van Luan, V. Ngoc Hung, N. Van Hieu. Gas Sensing Properties at Room Temperature of Quartz Crystal Microbalance Coated with ZnO Nanorods. Sensor & Actuator B 153 (2011) 188-193.

DOI: 10.1016/j.snb.2010.10.030

Google Scholar

[2] R. Yousefi, B. Kamaluddin. The Effect of Annealig Temperature on Structural and Optical Properties of S-doped ZnO Nanobelts. Solid State Sciences 12 (2010) 252-256.

DOI: 10.1016/j.solidstatesciences.2009.11.002

Google Scholar

[3] M. Rajabi, R. S. Dariani, A. Iraji Zad. UV Photodetection of Laterally Connected ZnO Rods Grown on Porous Silicon Substrate. Sensor & Actuator A 180 (2012) 11-14.

DOI: 10.1016/j.sna.2012.04.003

Google Scholar

[4] M.H. Mamat, M. Z. Sahdan, Z. Khusaimi, A. Zain Ahmed, S. Abdullah, M. Rusop. Influence of Doping Concentrations on the Aluminum Doped Zinc Oxide Thin Films Properties for Ultraviolet Photoconductive Sensor Application. Optical materials 32 (2010).

DOI: 10.1016/j.optmat.2009.12.005

Google Scholar

[5] S.S. Cetin, I. Uslu, A. Aytimur, S. Ozcelik. Characterization of Mg doped ZnO nanocrystallites Prepared Via Electrospinning. Ceramics International 38 (2012) 4201-4208.

DOI: 10.1016/j.ceramint.2012.02.003

Google Scholar

[6] A.E. Jimenez-Gonzalez, J. A. Soto Urueta, R. Suarez-Parra. Optical and Electrical Characteristics of Aluminum-doped ZnO Thin Films Prepared by Solgel Technique. Journal of Crystal Growth 192 (1998) 430-438.

DOI: 10.1016/s0022-0248(98)00422-9

Google Scholar

[7] Z. khusaimi, S. Amizam, M. H. Mamat, M. Z. Sahdan, M. K. Ahmad, N. Abdullah, M. Rusop. Controlled Growth of Zinx Oxide Nanorods by Aqueous-solution Method. Synthesis and Reactivity Inorganic, Metal-organic and Nano-metal Chemistry, 40: 190-194, (2010).

DOI: 10.1080/15533171003629147

Google Scholar

[8] Q. Shi, Z. Wang, Y. Liu, B. Yang, G. Wang, W. Wang, J. Zhang. Single-phased Emission-Tunable Mg doped ZnO phosphors for White LEDs. Journal of Alloys and Compounds. 553 (2013) 172-176.

DOI: 10.1016/j.jallcom.2012.11.135

Google Scholar

[9] R. Elilarassi, G. Chandrasekaran. Microstructural and Photoluminescence Properties of Co-doped ZnO Films Fabricated Using a Simple Solution Growth Method. Materials Science in Semiconductor Processing 14 (2011) 179-183.

DOI: 10.1016/j.mssp.2010.11.001

Google Scholar

[10] Z. Ben Ayadi, L. El Mir, K. Djessas, S. Alaya. Effect of the annealing temperature on transparency and conductivity of ZnO: Al thin films. Thin solid films 517 (2009) 6305-6309.

DOI: 10.1016/j.tsf.2009.02.062

Google Scholar

[11] M.H. Mamat, N. N. Hafizah, M. Rusop. Fabrication of thin, dense and small diameters zinc Oxide Nanorod Array-based Ultraviolet Photoconductive Sensors with High Sensitivity by Catalyst-free Radio Frequency Magnetron Sputtering. Materials Letters 93 (2013).

DOI: 10.1016/j.matlet.2012.11.105

Google Scholar

[12] T. Prasada Rao, M.C. Santhosh Kumar. Physical Properties of Ga-doped ZnO Thin Films by Spray Pyrolysis. Journal of Alloys and Compounds 506 (2010) 788-793.

DOI: 10.1016/j.jallcom.2010.07.071

Google Scholar