Microwave Absorption Study of Polyaniline Nanocomposites with Different Dimension of Multiwalled Carbon Nanotubes

Article Preview

Abstract:

Polyaniline (PAni) Nanocomposites Containinganiline (Ani) Monomer and Hexanoic Acid (HA) Dopant were Successfullysynthesized by Using Chemical Oxidation Method. Titanium Dioxide (TiO2)and Different Dimension of Multiwall Carbon Nanotubes (MWNT) Have been Added Inorder to Improve the Dielectric Permeability and Magnetic Permittivityproperties of the Pani Nanocomposites. Fourier Transform Infrared (FTIR) Andultraviolet-Visible (UV-Vis) Spectra Confirmed the Chemical Structure of Paninanocomposites. Conductivity and Magnetization Behavior were Investigated Byresistivity Meter and Vibrating Sample Magnetometer (VSM). Microwave Absorptionstudies were Carried out by Microwave Vector Network Analyzer (MVNA) from 0.5to 18 Ghz. among all the Pani Nanocomposites, Pani Nanocomposites with MWNT (D = 10-2- Nm, l = 5-15 μm) Shows Agood Reflection Loss (RL = -58 Db) at 7 Ghz with a Sharp and Narrow Peak due Tohigher Values of Magnetization (0.074 Emu/g) Andmoderate Electrical Conductivity (1.11 x 10-2 S/cm)

You might also be interested in these eBooks

Info:

Periodical:

Pages:

465-470

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.A. Abdul Hamid, M.H. Abdullah, S.H. Ahmad, A.A. Mansor, A.N. Yusoff, Effects of Natural Rubber on Microwave Absorption Characteristics of Some Li-Ni-Zn Ferrite-Thermoplastic Natural Rubber Composites, Jpn. J. Appl. Phys. 41 (2002) 5815-5820.

DOI: 10.1143/jjap.41.5815

Google Scholar

[2] L. Olmedo, P.H., F. Jousse, Handbook of Organic Conductive Molecules and Polymers, H.S. Nalwa ed, John Wiley and Sons Ltd., Chichester, (1997).

Google Scholar

[3] E. Hakansson, A.A., S. Nahavandi, A. Kaynak, Electromagnetic interference shielding and radiation absorption in thin polypyrrole films, Eur. Poly. J. 43 (2007) 205-213.

DOI: 10.1016/j.eurpolymj.2006.10.001

Google Scholar

[4] Z. Osawa, S. Kuwabara, Thermal stability of the shielding effectiveness of composites to electromagnetic interference. Effects of matrix polymers and surface treatment of fillers, Polym Degrad. Stabil. 35 (1992) 33-43.

DOI: 10.1016/0141-3910(92)90132-o

Google Scholar

[5] M.S. Kim, H.K. Kim, S.W. Byun, S.H. Jeong, Y.K. Hong, J.S. Joo, K.T. Song, J.K. Kim, C.J. Lee, J.Y. Lee, PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding, Synth. Met. 126 (2002) 233-239.

DOI: 10.1016/s0379-6779(01)00562-8

Google Scholar

[6] S. Koul, R. Chandra, S.K. Dhawan, Conducting polyaniline composite for ESD and EMI at 101 GHz, Polymer 41 (2000) 9305-9310.

DOI: 10.1016/s0032-3861(00)00340-2

Google Scholar

[7] H. Yoon, M. Chang, J. Jang, Formation of 1D Poly(3, 4-ethylenedioxythiophene) Nanomaterials in Reverse Microemulsions and Their Application to Chemical Sensors, Adv. Funct. Mater. 17 (2007) 431-436.

DOI: 10.1002/adfm.200600106

Google Scholar

[8] T. -H. Hsieh, K. -S. Ho, C. -H. Huang, Y. -Z. Wang, Z. -L. Chen, Electromagnetic properties of polyaniline/maghemite nanocomposites: I. The effect of re-doping time on the electromagnetic properties, Synth. Met. 156 (2006) 1355-1361.

DOI: 10.1016/j.synthmet.2006.10.005

Google Scholar

[9] S. Iijima, Helical microtubules of graphitic carbon, Nature. 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[10] G. Chakraborty, K. Gupta, D. Rana, A.K. Meikap, Effect of multiwalled carbon nanotubes on electrical conductivity and magnetoconductivity of polyaniline, Adv. Nat. Sci: Nanotechnol. 3 (2012) 035015.

DOI: 10.1088/2043-6262/3/3/035015

Google Scholar

[11] J. Yang, X. Wang, X. Wang, R. Jia, J. Huang, Preparation of highly conductive CNTs/polyaniline composites through plasma pretreating and in-situ polymerization, J. Phys. Chem. Solids. 71 (2010) 448-452.

DOI: 10.1016/j.jpcs.2009.12.008

Google Scholar

[12] C.Y. Lee, H.G. Song, K.S. Jang, E.J. Oh, A.J. Epstein, J. Joo, Electromagnetic interference shielding efficiency of polyaniline mixtures and multilayer films, Synth. Met. 102 (1999) 1346-1349.

DOI: 10.1016/s0379-6779(98)00234-3

Google Scholar

[13] V. Mottaghitalab, G.M. Spinks, G.G. Wallace, The influence of carbon nanotubes on mechanical and electrical properties of polyaniline fibers, Synth. Met. 152 (2005) 77-80.

DOI: 10.1016/j.synthmet.2005.07.154

Google Scholar

[14] L. Zhang, M. Wan, Y. Wei, Polyaniline micro/nanofibers doped with saturation fatty acids, Synth Met. 156 (2006) 454-458.

DOI: 10.1016/j.synthmet.2006.01.011

Google Scholar

[15] M. Nagaraja, H.M. Mahesh, J. Manjanna, K. Rajanna, M.Z. Kurian, S.V. Lokesh, Effect of Multiwall Carbon Nanotubes on Electrical and Structural Properties of Polyaniline, J. Electron. Mater. 41 (2012) 1882-1885.

DOI: 10.1007/s11664-012-2004-y

Google Scholar

[16] M. Trchová, I. Šeděnková, E. Tobolková, J. Stejskal, FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films, Polym. Degrad. Stab. 86 (2004) 179-185.

DOI: 10.1016/j.polymdegradstab.2004.04.011

Google Scholar

[17] M. Cochet, W.K. Maser, A.M. Benito, M.A. Callejas, M.T. Martinez, J. -M. Benoit, J. Schreiber, O. Chauvet, Synthesis of a new polyaniline/nanotube composite: polymerisation and charge transfer through site-selective interaction, Chem. Commun. 16 (2001).

DOI: 10.1039/b104009j

Google Scholar

[18] T. -M. Wu, Y. -W. Lin, Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties, Adv. Polym. Sci. 47 (2006) 3576-3582.

DOI: 10.1016/j.polymer.2006.03.060

Google Scholar

[19] S.W. Phang, N. Kuramoto, Microwave absorption property of polyaniline nanocomposites containing TiO2 and Fe3O4 nanoparticles after FeCl36H2O treatment. Polym. Comp. 31 (2010) 516-523.

DOI: 10.1002/pc.20838

Google Scholar