First-Principles Study on Structural, Electronic and Optical Properties of TiO2 for Dye-Sensitized Solar Cells Photoanode

Article Preview

Abstract:

First-principles study based on density functional theory (DFT) framework for structural, electronic and optical properties of titanium dioxide (TiO2) in anatase and rutile phases are investigated. Anatase phase exhibits wide band gap compare to rutile phase. The partial and total density of states for TiO2 (anatase and rutile) describes the occupying of titanium (Ti) and oxygen (O) atoms at each energy level. TiO2 has a high dielectric constant to avoid the recombination process while its high refractive index provides the efficient of light diffusion. The optical absorption of TiO2 occurs in ultraviolet (UV) light of the wavelength photon. The results from the first-principles calculations will be helpful to give an understanding about the properties of TiO2 as promising photoanode in dye-sensitized solar cell (DSSC).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

719-725

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature. 353 (1991) 737-740.

DOI: 10.1038/353737a0

Google Scholar

[2] J. Liu, H. Yang, W. Tan, X. Zhou, Y. Lin, Photovoltaic performance improvement of dye-sensitized solar cells based on tantalum-doped TiO2 thin films, Electrochim. Acta, 56 (2010) 396-400.

DOI: 10.1016/j.electacta.2010.08.063

Google Scholar

[3] S. Dueñas, H. Castán, H. García, E. S. Andrés, M. Toledano-Luque, I. Mártil, G. González-Díaz, K. Kukli, T. Uustare, J. Aarik, A comparative study of the electrical properties of TiO2 films grown by high-pressure reactive sputtering and atomic layer deposition, Semicond. Sci. Technol. 20 (2005).

DOI: 10.1088/0268-1242/20/10/011

Google Scholar

[4] M. Thaidun, B. V. Rao, L. R. M. Reddy, G. V. Chalapathi, Structural, Dielectric and Optical properties of Sputtered TiO2, IOSR Journal of Applied Physics 4 (2013) 49-53.

DOI: 10.9790/4861-0424953

Google Scholar

[5] I. C. Mirjana, M. D. Dramic, D. J. Jovanovic, S. P. Ahrenkiel, J. M. Nedeljkovic, Photoluminescence of Anatase and Rutile TiO2 Particles. J. Phys. Chem. B 110 (2006) 25366-25370.

Google Scholar

[6] L. Chiodo, J. M. García-lastra, A. Iacomino, S. Ossicini, J. Zhao, H. Petek, A. Rubio, Self-Energy and Excitonic Effects in the Electronic and Optical Properties of TiO2 Crystalline Phases, J. Phys. Chem. B Phys. 82 (2010) 1-33.

DOI: 10.1103/physrevb.82.045207

Google Scholar

[7] L. Chiodo, J. M. García-Lastra, D. J. Mowbray, A. Iacomino, A. Rubio, Tailoring electronic and optical properties of TiO2: nanostructuring, doping and molecular-oxide interactions, in: T. F. George, D. Jelski, R. R. Letfullin, G. Zhang, Computational Studies of New Materials II: From Ultrafast Processes and Nanostructures to Optoelectronics, Energy Storage and Nanomedicine, Ed. World Scientific, Hackensack, 2012, pp.301-330.

DOI: 10.1142/9789814287197_0012

Google Scholar

[8] A. D. Paola, M. Bellardita, L. Palmisano, Brookite, the Least Known TiO2 Photocatalyst, 3 (2013) 36-73.

DOI: 10.3390/catal3010036

Google Scholar

[9] N. Park, J. Lagemaat, A. J. Frank, Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells, J. Phys. Chem. B, 104 (2000) 8989-8994.

DOI: 10.1021/jp994365l

Google Scholar

[10] M. F. M. Taib, M. K. Yaakob, F. W. Badrudin, T. I. T. Kudin, O. H. Hassan, M. Z. A. Yahya, First-Principles Calculation on the Structural, Elastic, Electronic and Lattice Dynamics of GeTiO3, Ferroelectrics. 452 (2013) 122-128.

DOI: 10.1080/00150193.2013.841525

Google Scholar

[11] M. F. M. Taib, M. K. Yaakob, F. W. Badrudin, M. S. A. Rasiman, T. I. T. Kudin, O. H. Hassan, M. Z. A. Yahya, First-Principles Comparative Study of the Electronic and Optical Properties of Tetragonal (P4mm) ATiO3 (A=Pb, Sn, Ge), Integr. Ferroelectr. 155 (2014).

DOI: 10.1080/10584587.2014.905105

Google Scholar

[12] M. Landmann, E. Rauls, W. G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2, J. Phys. Condens. Matter. 24 (2012) 195503-19558.

DOI: 10.1088/0953-8984/24/19/195503

Google Scholar

[13] D. M. Ceperley, B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett. 45 (1980) 566-569.

DOI: 10.1103/physrevlett.45.566

Google Scholar

[14] J. P. Perdew , A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B. 23 (1981) 5048-5079.

DOI: 10.1103/physrevb.23.5048

Google Scholar

[15] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, First principles methods using CASTEP, Zeitschrift für Kristallographie, 220 (2005) 567-570.

DOI: 10.1524/zkri.220.5.567.65075

Google Scholar

[16] M. Horn, C. F. Schwerdtfeger, Refinement of the structure of anatase at several temperatures, Zeitschrift für Kristallographie, Bd. 136 (1972) 273-281.

DOI: 10.1524/zkri.1972.136.3-4.273

Google Scholar

[17] R. W. G. Wyckoff, Crystal Structures, John Wiley, New York (1963).

Google Scholar

[18] K. M. Reddya, S. Manoramaa, A. R. Reddy, Bandgap studies on anatase titanium dioxide nanoparticles, Mater. Chem. 78 (2003) 239-245.

Google Scholar

[19] A. Amtout, R. Leonelli, Optical properties of rutile near its fundamental band gap, Phys. Rev. B, 51 (1995) 6842-6851.

DOI: 10.1103/physrevb.51.6842

Google Scholar

[20] E. Sagvolden, J. Perdew, Discontinuity of the exchange-correlation potential: Support for assumptions used to find it, Phys. Rev. A, 77 (2008) 012517.

DOI: 10.1103/physreva.77.012517

Google Scholar

[21] J. Lee, M. Yang, Progress in light harvesting and charge injection of dye-sensitized solar cells, Mater. Sci. Eng. B 176 (2011) 1142-1160.

DOI: 10.1016/j.mseb.2011.06.018

Google Scholar

[22] S. Gong, B. Liu, Electronic structures and optical properties of TiO2: Improved density-functional-theory investigation, Chinese Phys. B 21 (2012).

Google Scholar

[23] A. Kay, M. Grätzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder, 44 (1996) 99-117.

DOI: 10.1016/0927-0248(96)00063-3

Google Scholar

[24] M. Baraton, Nano-TiO2 for Solar Cells and Photocatalytic Water Splitting: Scientific and Technological Challenges for Commercialization, Open Nanosci. J. (2011) 64-77.

DOI: 10.2174/1874140101105010064

Google Scholar

[25] X. Zhang, F. Liu, Q. Huang, G. Zhou, Z. Wang, Dye-Sensitized W-Doped TiO2 Solar Cells with a Tunable Conduction Band and Suppressed Charge Recombination, J. Phys. Chem. C 115 (2011) 12665-12671.

DOI: 10.1021/jp201853c

Google Scholar

[26] M. Wang, S. Bai, A. Chen, Y. Duan, Q. Liu, D. Li, Y. Lin, Improved photovoltaic performance of dye-sensitized solar cells by Sb-doped TiO2 photoanode, Electrochim. Acta. 77 (2012) 54-59.

DOI: 10.1016/j.electacta.2012.05.050

Google Scholar

[27] R. Taziwa, E. Meyer, Carbon Doped Nano-Crystalline TiO2 Photo-Active Thin Film for Solid State Photochemical Solar Cells, Advances in Nanoparticles. 3 (2014) 54-63.

DOI: 10.4236/anp.2014.32008

Google Scholar

[28] W. Li, J. Yang, J. Zhang, S. Gao, Y. Luo, M. Liu, Improve photovoltaic performance of titanium dioxide nanorods based dye-sensitized solar cells by Ca-doping, Mater. Res. Bull. 57 (2014) 177-183.

DOI: 10.1016/j.materresbull.2014.05.034

Google Scholar