Photocatalyst Composites of Luminescent Trinuclear Copper(I) Pyrazolate Complexes/Titanium Oxide for Degradation of 2,4-Dichlorophenoxyacetic Acid

Article Preview

Abstract:

Here phosphorescent trinuclear copper (I) pyrazolate complexes ([Cu3Pz3]), synthesized from 3,5-dimethyl and 4-(3,5-dimethoxybenzyl)-3,5-dimethyl pyrazole ligands for complexes [Cu3Pz3]1 and [Cu3Pz3]2, were successfully impregnated into TiO2 with concentration of 0.1 mol%. These luminescent photocatalyst composites ([Cu3Pz3]1 or 2/TiO2) gave 60% and 49% of dichlorophenoxyacetic acid (2,4-D) degradation after 1 h for [Cu3Pz3]1/TiO2 and [Cu3Pz3]2/TiO2, while TiO2 only showed 48%. The higher activity observed on [Cu3Pz3]1/TiO2 than the TiO2 would come from the efficient reduction of electron-hole recombination, while less dispersion of complex [Cu3Pz3]2 with more rigid structure compared to complex [Cu3Pz3]1 gave similar activity of the [Cu3Pz3]2/TiO2 to the TiO2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

697-701

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. M. Linsebigler, G. Lu and J. T. Yates Jr. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews 95 (1995) 735-738.

DOI: 10.1021/cr00035a013

Google Scholar

[2] M. R. Hoffmann, S. T. Martin, W. Choi and D.W. Bahnemann. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews 95 (1995): 69-96.

DOI: 10.1021/cr00033a004

Google Scholar

[3] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 293 (2001): 269-271.

DOI: 10.1126/science.1061051

Google Scholar

[4] G. Liu, L. Wang, H. G. Yang, H. -M. Cheng and G. Q. Lu. Titania-Based Photocatalysts - Crystal Growth, Doping and Heterostructuring. Journal of Materials Chemistry 20 (2010): 831-843.

DOI: 10.1039/b909930a

Google Scholar

[5] C. M. The and A. R. Mohamed. Roles of Titanium Dioxide and Ion-Doped Titanium Dioxide on Photocatalytic Degradation of Organic Pollutants (Phenolic Compounds and Dyes) in Aqueous Solutions: a Review. Journal of Alloys and Compounds 509 (2011).

DOI: 10.1016/j.jallcom.2010.10.181

Google Scholar

[6] J. Sykora. Photochemistry of Copper Complexes and their Environmental Aspects. Coordination Chemistry Reviews 159 (1997): 95-108.

DOI: 10.1016/s0010-8545(96)01299-4

Google Scholar

[7] T. Morikawa, Y. Irokawa and T. Ohwaki. Enhanced Photocatalytic Activity of TiO2−xNx Loaded with Copper Ions under Visible Light Irradiation. Applied Catalysis A: General 314 (2006): 123-127.

DOI: 10.1016/j.apcata.2006.08.011

Google Scholar

[8] D. Beydoun, H. Tse, R. Amal, G. Low and S. McEvoy. Effect of Copper(II) on the Photocatalytic Degradation of Sucrose. Journal of Molecular Catalysis A: Chemical 177 (2002): 265-272.

DOI: 10.1016/s1381-1169(01)00272-2

Google Scholar

[9] M. Enamoto, A. Kishimura and T. Aida. Coordination Metallacycles of an Achiral Dendron Self-Assemble via Metal-Metal Interaction to Form Luminescent Superhelical Fibers. Journal of the American Chemical Society 123 (2001): 5608-5609.

DOI: 10.1021/ja010426t

Google Scholar

[10] A. Cingolani, S. Galli, N. Masciocchi, L. Pandolfo, C. Pettinari and T. Angelo Sironi. Sorption-Desorption Behavior of Bispyrazolato-Copper(II) 1D Coordination Polymers. Journal of the American Chemical Society 127 (2005): 6144-6145.

DOI: 10.1021/ja050856+

Google Scholar

[11] A. Kishimura, T. Yamashita, K. Yamaguchi and T. Aida. Rewritable Phosphorescent Paper by the Control of Competing Kinetic and Thermodynamic Self-Assembling Events. Nature Materials 4 (2005): 546-549.

DOI: 10.1038/nmat1401

Google Scholar

[12] A. V. Rasika Dias, H. V. K. Diyabalanage, M. A. Rawashdeh-Omary, M. A. Franzman and M. A. Omary. Bright Phosphorescence of a Trinuclear Copper(I) Complex: Luminescence Thermochromism, Solvatochromism, and "Concentration Luminochromism. Journal of the American Chemical Society 125 (2003).

DOI: 10.1021/ja036736o

Google Scholar

[13] A. V. Rasika Dias, H. V. K. Diyabalanage, M. G. Eldabaja, O. Elbjeirami, M. A. Rawashdeh-Omary, M. A. Franzman and M. A. Omary. Brightly Phosphorescent Trinuclear Copper(I) Complexes of Pyrazolates: Substituent Effects on the Supramolecular Structure and Photophysics. Journal of the American Chemical Society 127 (2005).

DOI: 10.1021/ja0427146

Google Scholar

[14] R. G. Raptis and J. P. Fackler Jr. Structure of Tris(μ-3, 5-diphenylpyrazolato-N, N')tricopper(I). Structural Comparisons with the Silver(I) and Gold(I) Pyrazolate Trimers. Inorganic Chemistry 27 (1998): 4179-4182.

DOI: 10.1021/ic00296a018

Google Scholar

[15] H. H. Murray, R. G. Raptis and J. P. Fackler Jr. Syntheses and X-ray Structures of Group 11 Pyrazole and Pyrazolate Complexes. X-ray Crystal Structures of Bis(3, 5-diphenylpyrazole)copper(II) Dibromide, Tris(μ-3, 5-diphenylpyrazolato-N, N')trisilver(I)-2-tetrahydrofuran, Tris(μ-3, 5-diphenylpyrazolato-N, N')trigold(I), and Hexakis(μ-3, 5-diphenylpyrazolato-N, N')hexagold(I). Inorganic Chemistry 27 (1998).

DOI: 10.1021/ic00274a008

Google Scholar

[16] M. K. Ehlert, S. J. Rettig, A. Storr, R. C. Thompson and J. Trotter. Synthesis and X-ray Crystal Structure of the 3, 5-Dimethylpyrazolato Copper(I) Trimer, [Cu(pz")]3. Canadian Journal of Chemistry 68 (1990): 1444-1449.

DOI: 10.1139/v90-221

Google Scholar

[17] K. Fujisawa, Y. Ishikawa, Y. Miyashita and K. -I. Okamoto. Crystal Structure of Pyrazolato-Bridged Copper(I) Polynuclear Complexes. Chemistry Letters 33 (2004): 66-67.

DOI: 10.1246/cl.2004.66

Google Scholar

[18] O. M. Aly and S. D. Faust. Herbicides in Surface Waters, Studies on Fate of 2, 4-D and Ester Derivatives in Natural Surface Waters. Journal of Agricultural and Food Chemistry 12 (1964): 541-546.

DOI: 10.1021/jf60136a016

Google Scholar

[19] R. D. Wilson, J. Geronimo and J. A. Armbruster. 2, 4-D Dissipation in Field Soils after Applications of 2, 4-D Dimethylamine Salt and 2, 4-D 2-Ethylhexyl Ester. Environmental Toxicology and Chemistry 16 (1997): 1239-1246.

DOI: 10.1002/etc.5620160620

Google Scholar

[20] D. Kaioumova, C. Süsal and G. T. Opelz. Induction of Apoptosis in Human Lymphocytes by the Herbicide 2, 4-Dichlorophenoxyacetic Acid. Human Immunology 62 (2001): 64-74.

DOI: 10.1016/s0198-8859(00)00229-9

Google Scholar

[21] A. A. Pochettino, B. Bongiovanni, R. O. Duffard and A. M. E. Duffard. Oxidative Stress in Ventral Prostate, Ovary, and Breast by 2, 4-Dichlorophenoxyacetic Acid in Pre- and Postnatal Exposed Rats. Environmental Toxicology 28 (2013): 1-10.

DOI: 10.1002/tox.20690

Google Scholar

[22] J. Rivera-Utrilla, M. Sánchez-Polo, M. M. Abdel and R. Ocampo-Pérez. Role of Activated Carbon in the Photocatalytic Degradation of 2, 4-Dichlorophenoxyacetic Acid by the UV/TiO2/Activated Carbon System. Applied Catalysis B: Environmental 126 (2012).

DOI: 10.1016/j.apcatb.2012.07.015

Google Scholar

[23] M. Trillas, J. Peral and X. Domenech. Photocatalyzed Degradation of Phenol, 2, 4-Dichlorophenol, Phenoxyacetic Acid and 2, 4-Dichlorophenoxyacetic Acid over Supported TiO2 in a Flow System. Journal of Chemical Technology and Biotechnology 67 (2011).

DOI: 10.1002/(sici)1097-4660(199611)67:3<237::aid-jctb567>3.0.co;2-4

Google Scholar

[24] K. Djebbar and T. Sehili. Kinetics of Heterogeneous Photocatalytic Decomposition of 2, 4-Dichlorophenoxyacetic Acid over Titanium Dioxide and Zinc Oxide in Aqueous Solution. Pesticide Science 54 (1998): 269-276.

DOI: 10.1002/(sici)1096-9063(1998110)54:3<269::aid-ps811>3.0.co;2-i

Google Scholar

[25] N. F. Ghazalli, Y. Yuliati, S. Endud, M. Shamsuddin and H. O. Lintang. Vapochromic Copper(I) Pyrazolate Complex Materials for Phosphorescent Chemosensors of Ethanol. Advanced Materials Research 970 (2014): 44-47.

DOI: 10.4028/www.scientific.net/amr.970.44

Google Scholar