First Principles Study on Structural and Electronic Properties of PZT and PSnZT Using Density Functional Theory

Article Preview

Abstract:

The geometry optimization of the tetragonal supercell 1x1x2 (P4mm, 99 space group) of PZT and PSnZT were calculated using different exchange correlation functional such as Local Density Approximate (LDA-CAPZ) and Generalized Gradient Approximation (GGA-PBE & GGA-PBEsol).The calculation using functional GGA-PBEsol exhibits the most accurate values of lattice parameter and volume of structure relative to the experiment results with typical error of approximately 1% underestimate (only for PZT-as reference materials). The electronic band structure and density of state (DOS) were also studied in order to understand the electron density and hybrization between cation and anion in the compound. The density of state studies indicated existing of hybridizations among anion O 2p, cation Pb 6s/Sn 5s (special lone pair) and the Ti 3d/Zr 4d states of PZT and PSnZT compound. An indirect band gap was respectively obtained for both cubic PZT and PSnZT at the F-G and Q-G point with 3.154 eV and 2.571 eV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

734-739

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, L. E. Cross, & S. -E. Park, A monoclinic ferroelectric phase in the PbZr1−xTixO3 solid solution, Appl. Phys. Lett. 74 (14) (1999) 2059-(2061).

DOI: 10.1063/1.123756

Google Scholar

[2] S. M. Hosseini,T. Movlarooy, a. Kompany, First-principle calculations of the cohesive energy and the electronic properties of PbTiO3. Physica B: Condensed Matter, 391 (2007) 316–321.

DOI: 10.1016/j.physb.2006.10.013

Google Scholar

[3] F. D. Mansor, M. K. Yaakob, M. F. M. Taib, T. I. T. Kudin, O. H. Hassan, M. Z. A. Yahya, Influences of Epitaxial Strain and Volume on BaTiO 3 : Ab Initio Total Energy Calculation, Integr. Ferroelectr. 155 (2014) 91–99.

DOI: 10.1080/10584587.2014.905350

Google Scholar

[4] A. Safari, M. Abazari,. Lead-free piezoelectric ceramics and thin films. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 57 (2010) 2165-2176.

DOI: 10.1109/tuffc.2010.1674

Google Scholar

[5] G. Vats, A. Chauhan, R. Vaish, Thermal Energy Harvesting Using Bulk Lead-Free Ferroelectric Ceramics. Int. J. Appl. Ceram. Technol. (2014) 1–6.

DOI: 10.1111/ijac.12214

Google Scholar

[6] S. Bhandari, N. Sinha, G. Ray & B. Kumar, Flux growth of lead free (Na0. 5Bi0. 5)TiO3–(K0. 5Bi0. 5)TiO3 ferroelectric single crystals and their characterization. Cryst. Eng. Comm, 16 (2014) 4459-4466.

DOI: 10.1039/c4ce00249k

Google Scholar

[7] M.F.M. Taib, M.K. Yaakob, O.H. Hassan, M.Z.A. Yahya, Structural, Electronic, and Lattice Dynamics of PbTiO3, SnTiO3, and SnZrO3 : A Comparative First-Principles Study, Integr. Ferroelectr., 142 (2013) 119–127.

DOI: 10.1016/j.ceramint.2012.10.081

Google Scholar

[8] M. F. M. Taib, M. K. Yaakob, O. H. Hassan, A. Chandra, A. K. Arof, and M. Z. A. Yahya, First principles calculation on structural and lattice dynamic of SnTiO3 and SnZrO3, Ceram. Int., 39 (2013) S297–S300.

DOI: 10.1016/j.ceramint.2012.10.081

Google Scholar

[9] Z. Zhang, Elemental substitution of lead zirconate titanate, PhD Thesis, (2008).

Google Scholar

[10] M. K. Yaakob, M. F. M. Taib, and M. Z. A. Yahya, First Principle Study of Dynamical Properties of a New Perovskite Material Based on GeTiO3, in Advanced Materials Research, 501 (2012) 352–356.

DOI: 10.4028/www.scientific.net/amr.501.352

Google Scholar

[11] M. F. M. Taib, M. K. Yaakob, F. W. Badrudin, T. I. T. Kudin, O. H. Hassan, and M. Z. A. Yahya, First-Principles Calculation of the Structural, Elastic, Electronic and Lattice Dynamics of GeTiO3, Ferroelectrics, 452 (2013) 122–128.

DOI: 10.1080/00150193.2013.841525

Google Scholar

[12] M.K. Yaakob, M.F.M. Taib, M.S.M. Deni, M.Z. A Yahya, Ab Initio Studies on the Structural and Electronic Properties of Bismuth Ferrite Based on Ferroelectric Hexagonal Phase and Paraelectric Orthorhombic Phase, Integrated Ferroelectrics, 155 (2014).

DOI: 10.1080/10584587.2014.905306

Google Scholar

[13] M. K. Yaakob, M. F. M. Taib, O. H. Hassan, and M. Z. A. Yahya, Low-energy phases, electronic and optical properties of Bi1−xLaxFeO3 solid solution: Ab-initio LDA+U studies, Ceram. Int. 41 (2015) 10940–10948.

DOI: 10.1016/j.ceramint.2015.05.037

Google Scholar

[14] M. K. Yaakob, M. F. M. Taib, M. S. M. Deni, A. Chandra, L. Lu, and M. Z. A. Yahya, First principle study on structural, elastic and electronic properties of cubic BiFeO3, Ceram. Int., 39 (2013) S283–S286.

DOI: 10.1016/j.ceramint.2012.10.078

Google Scholar

[15] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, First principles methods using CASTEP , Zeitschrift fuer Kristallographie, 220 (2005) 567-570.

DOI: 10.1524/zkri.220.5.567.65075

Google Scholar

[16] B. Noheda, J. Gonzalo, L. Cross, R. Guo, S. -E. Park, D. Cox, & G. Shirane, Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: The structure of PbZr0. 52Ti0. 48O3, Physical Review B. 61 (2000) 8687–8695.

Google Scholar