Thermoelectric Characterization of Ti and In Double-Doped Cobalt Antimony Thin Films

Article Preview

Abstract:

CoSb3 thermoelectric thin films were prepared on polyimide flexible substrate by radio frequency (RF) magnetron sputtering technology using a cobalt antimony alloy target. Ti and In were added into CoSb3 thin films by co-sputtering. The influence of Ti and In on the thermoelectric properties of CoSb3 thin films was investigated. X-ray diffraction result shows that the major diffraction peaks of all the thin films match the standard peaks related to the CoSb3 phase. The sample has best thermoelectric properties when the Ti sputtering time was 1min and In sputtering time was 30 seconds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-147

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413(2001) 597-602.

DOI: 10.1038/35098012

Google Scholar

[2] L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science. 321(2008) 1457.

DOI: 10.1126/science.1158899

Google Scholar

[3] G.D. Mahan, Good thermoelectric, Solid State Phys. 51(1998) 81-157.

Google Scholar

[4] S.K. Bux, J.P. Fleurial, R.B. Kaner, Nanostructured materials for the thermoelectric applications, Chem. Commun. 46(2010) 8311-8324.

DOI: 10.1039/c0cc02627a

Google Scholar

[5] W.S. Liu, X. Yan, G. Chen, Z.F. Ren, Recent advances in thermoelectric nanocomposites, Nano Energy. 1(2012) 42-56.

DOI: 10.1016/j.nanoen.2011.10.001

Google Scholar

[6] X. Shi, H. Kong, C. -P. Li, C. Uher, J. Yang, Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites, Appl. Phys. Lett. 92(2008) 182101.

DOI: 10.1063/1.2920210

Google Scholar

[7] J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States, Science. 321(2008) 554.

DOI: 10.1126/science.1159725

Google Scholar

[8] D.J. Singh, W.E. Pickett, Skutterudite antimonides: Quasilinear bands and unusual transport, Phys. Rev. B. 50(1994) 11235-11238.

DOI: 10.1103/physrevb.50.11235

Google Scholar

[9] T. He, J.Z. Chen, H.D. Rosenfeld, M.A. Subramanian, Thermoelectric Properties of Indium-Filled Skutterudites, Chem. Mater. 18(2006) 759-762.

DOI: 10.1021/cm052055b

Google Scholar

[10] W.Y. Zhao, P. Wei, Q.J. Zhang, C.L. Dong, L.S. Liu, X.F. Tang, Enhanced Thermoelectric Performance in Barium and Indium Double-Filled Skutterudite Bulk Materials via Orbital Hybridization Induced by Indium Filler, J. Am. Chem. Soc. 131(2009).

DOI: 10.1021/ja8089334

Google Scholar

[11] J. Gra, S. Zhu, T. Holgate, J. Peng, J. He, T.M. Tritt, High-Temperature Thermoelectric Properties of Co4Sb12-Based Skutterudites with Multiple Filler Atoms: Ce0. 1InxYbyCo4Sb12, J. Electron. Mater. 40(2011) 696-701.

DOI: 10.1007/s11664-011-1514-3

Google Scholar

[12] H. Li, X.F. Tang, Q.J. Zhang, C. Uher, High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase, Appl. Phys. Lett. 94(2009) 102114.

DOI: 10.1063/1.3099804

Google Scholar

[13] G. Rogl, A. Grytsiv, K. Yubuta, S. Puchegger, E. Bauer, C. Raju, R.C. Mallik, P. Rogl, In-doped multifilled n-type skutterudites with ZT=1. 8, Acta. Mater. 95(2015) 201-211.

DOI: 10.1016/j.actamat.2015.05.024

Google Scholar

[14] X. Shi, W. Zhang, L. D. Chen, J. Yang, Filling Fraction Limit for Intrinsic Voids in Crystals: Doping in Skutterudites, Phys. Rev. Lett. 95(2005) 185503.

DOI: 10.1103/physrevlett.95.185503

Google Scholar

[15] P. Fan, Y. Zhang, Z.H. Zheng, W.F. Fan, J.T. Luo, G.X. Liang, D.P. Zhang, Thermoelectric Properties of Cobalt Antimony Thin Films Deposited on Flexible Substrates by Radio Frequency Magnetron Sputtering, J. Electron. Mater. 44(2015) 630-635.

DOI: 10.1007/s11664-014-3546-y

Google Scholar